
Ole Baltazar Andersen Stine Kildegaard Rose

tides from Cryosat-2

IDS workshop

OSTST meeting

Contribution to ESA ALBATROSS project

DTU Space National Space I

Cryosat-2 Orbit parameters

With ESA official 369 days repeat

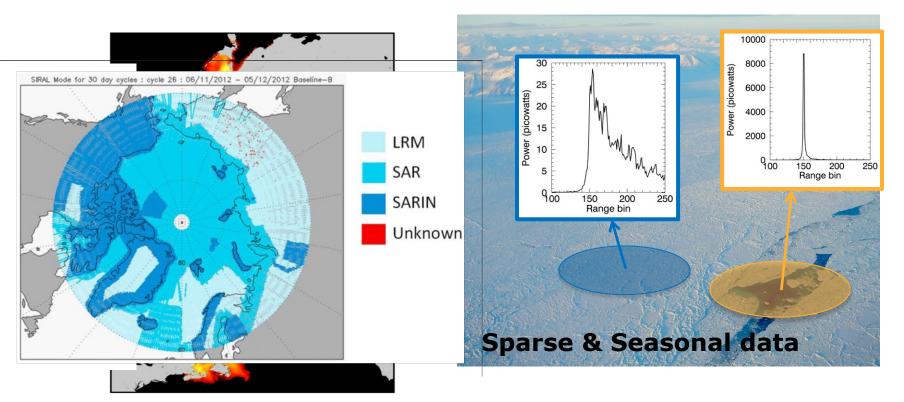
	Jason-3	Saral AltiKa	Cryosat-2	Sentinel 3A/3B
M2	61.75	95.33	8487.00	155.25
S2		∞	∞	∞
K1	179.00	341.86	4647.46	341.86
Annual	365	365	33671	365

Table 2: Alias periods given in days.

TABLE 1. *CryoSat-2* orbit parameters.

Zaron	اد tم	2018
Zaron	et ai.	ZUIO

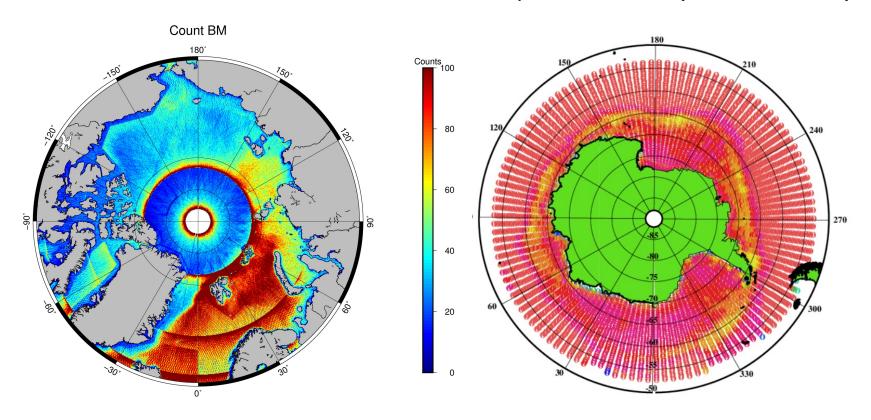
Orbit attribute	Value
Altitude	717.242 km
Inclination	92°
Repeat cycle	368.24 days
Orbits per cycle	5344
Track spacing at equator	7.5 km
Pseudosubcycles	28.33 days, 2.18 days
Orbit period	1.654 h
Mean local solar time drift	$-179.21 \mathrm{s} \mathrm{day}^{-1}$
Longitude of ascending node	309.37°


C2 – Real Tidal Aliasing

	Sample interval Δt (days)				
	368.2396	28.9410	19.4246	7.5180	1.9983
$\overline{\mathrm{M_2}}$	800	371	42	16	14
S_2	768	245	129	209	576
K_2	743	715	438	98	267
N_2	2095	225	113	30	9
K_1	1486	1430	41	16	535
O_1	1262	294	347	638	14
P_1	1591	209	52	15	277
Q_1	5106	195	55	26	9
NO_1	3170	962	86	28	29
MO_3	2187	164	47	16	7
MK_3	1734	500	1682	115	15
M_4	4633	185	288	140	7

Zaron et al. 2018

Cryosat -2 reprocessing using ESA GPOD


SAMOSA+ modification to SAMOSA retracking model by Dinardo, S (2018) Works over SAR and SARin region (most of Arctic and Antarctic) Operate over specular scattering surfaces as ice and robust to off-nadir returns from ice

Solving for SSH, SWH and Wind Speed it enables the determination of SSB

National Space Institute SAMOSA+ Retracker (2010-2019)

- SAR+SARin physical Retracked (>80% of the region) by ESA GPOD service
- We compute and apply Sea State Bias to SAR+SARin data
- LRM from RADS 1 Hz products
- Add other satellites when available and when it improve solution (SA/N1+Jasons)

Method

- Remove/restore wrt FES2014b ocean tide model.
 - Remove Elastic Ocean tide.
 - Compute EO residuals
 - Restore loading residuals and FES2014b ocean tide constituents.
- Averaging 20 Hz SLA anomalies witin 0.5 x 3 degree cells (shifted)
 - Use C2 (LRM,SAR,SARin)
 - Add SA,N1,JA1/2/3 nomimal+interleaved)
- Accuracy of MSS is an issue (track to track)
 - We apply DTU21MSS to minimize (Based on SAMOSA retracked data).
- Harmonic method is problematic (Zaron, 2018).
- Use Response method (Added harmonic prediction of non-linear (M4, MS4)

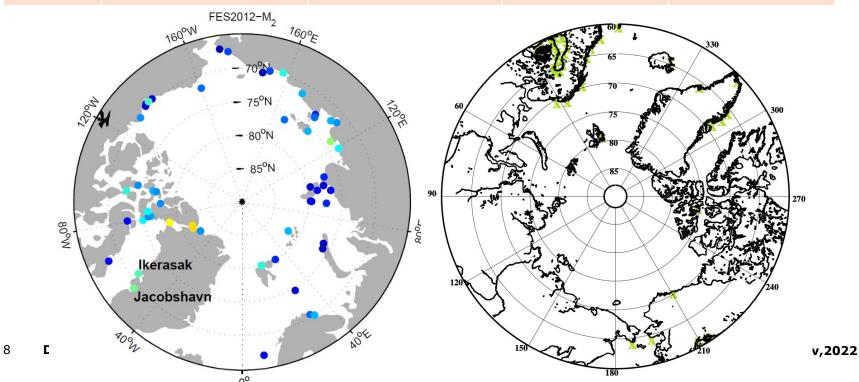
$$h(t) = \sum_{m=1}^{2} \sum_{k=-K}^{K} \left[u_k \, a^m (t - \Delta k) + v_k \, b^m (t - \Delta k) \right] \qquad \text{(diurnal, semidiurnal)} \qquad 12 \text{ param}$$

$$+ \sum_{n=1}^{N} \left[H_{1_n} \cos (\sigma_n t) + H_{2_n} \sin (\sigma_n t) \right] \qquad \text{(shallow water)} \qquad 2 \text{ param}$$

$$+ H_{1_{ann}} \cos (\sigma_{ann} t) + H_{2_{ann}} \sin (\sigma_{ann} t) \qquad \text{(annual variation)}. \qquad \text{ostst, Venice, Nov, 2022}$$

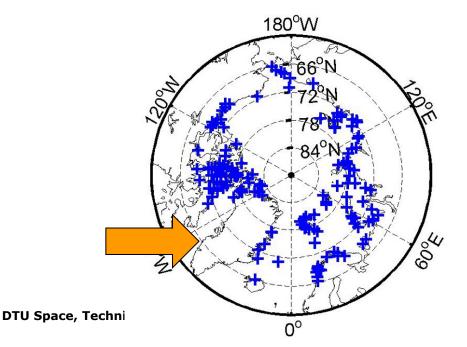
Arctic Ocean M2 cosine FES2014 residuals

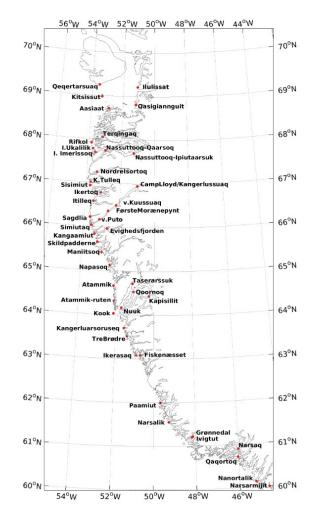
Physical SAMOSA+.


Empirical Threshold rtrk

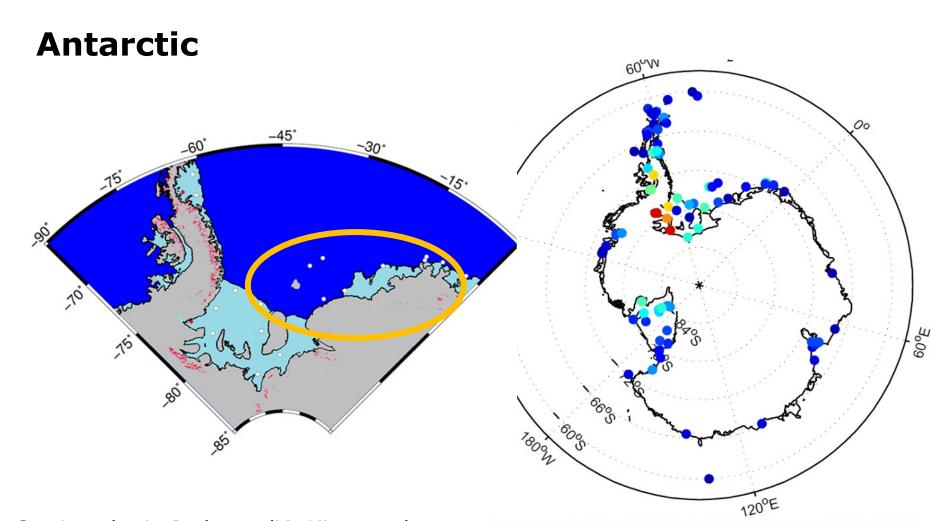
Arctic Evaluation

	Pre 1990 (56 TG)		TICON 2020 (65 TG)		
	FES 2014	"DTU22"	FES2014	"DTU22"	
M2	4.74	4.73	2.43	1.88	
S2	5.65	4.94	2.40	1.80	
K1	2.46	2.47	1.21	1.18	
01	1.60	1.55	0.98	0.80	





Revisiting the Arctic Tide constituent set.

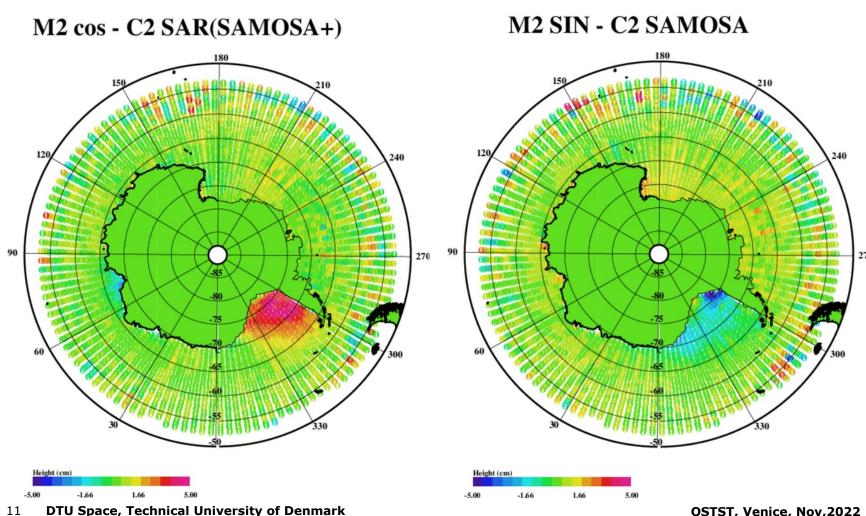

Constituent dataset compiled in Late 1980's. By Kowalik and Protushinsky Varying quality (Local phase/time zone problematic). Normally reduced empirically to 50+ stations.

Recompile new Arctic set + add TICON2020 Number of new stations (e.g., 40+ in Greenland)

Stations by L. Padmam/M. King et al.

20

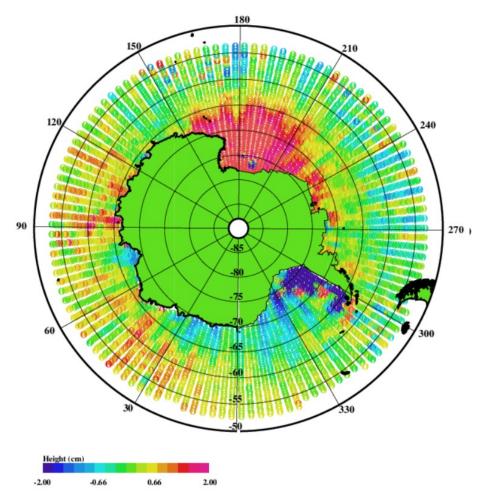
25


15

10

Compiled by Zaron.

M2 tidal constituent



The S2 + K1 constituents

S2 COS - C2 SAMOSA

K1 SIN - C2 SAMOSA

RMSVE. Comparison (30 stations). Zaron+King+Padman

	FES2014 (cm)	GOT 4.10	CATS08	Zaron 2018	"DTU22" (cm)
M2	4.51	4.3	4.5	3.9	3.88
S2	4.43	8.8	7.6	6.8	2.76
K1	6.04	4.5	2.4	2.8	2.43
01	6.69	5.6	1.2	2.1	2.61
8 selected					
M2	4.65	75 -60°	-45° -30°	215.	2.39
S2	4.62	si All			2.69
K1	5.19	10	- March		2.51
01	6.01	15 5.0	es De		2.44

Numbers from GOT4.10/CATS08/Zaron are from Zaron et al. Table 5

Conclusions

Cryosat-2's 3.68.24 days repeat is great for tidal prediction.

Important to maintain and develop independent validation dataset (e.g.Ticon2020

I think we should recommend to ESA that Cristal is launced is not Launched in sun-syncronous orbit – Planned for 367.0 days

As SARAL and Sentinel 3 are Synsyncronous (Bad S2)

Thanks to ESA for supporting the the Albatross project. Thanks to fantastic ESA GPOD service -> Earth Console

Data and model availability

Binned altimetric anomalies (DIY tide model and methodology)

Estimated constituents at point locations (24 major constituents)

DTU22 ocean tide model.

Data.dtu.dk (briefly).

