Waiting for CRISTAL

Evaluation of a Snow Depth product using Ka/Ku Dual-Frequency Altimetry

Impact on Sea Ice Thickness Estimation

OSTST, Venice 2022

S.Fleury, F.Garnier, M.Bocquet, A.Carret, C. Boulard, F.Rémy

Motivations

Motivations

Why Sea Ice Thickness (SIT) ?

[E.Blockley et al, 2018]

- to improve forecasts using SIT data assimilation
 - to better understand the ice dynamics and improve climatic projections (e.g., albedo effect)
 - to access to sea ice volume variations
 - to study impacts of freshwater inflow on <u>ocean circulation</u>
 - for <u>navigation</u> safety
 - ice algae, plankton, etc., development, ...

How to measure Sea Ice Thickness ?

Sea Ice Thickness by Altimetry: principle

hydrostatic equilibrium equation

Sea Ice Thickness by Altimetry: Effect of Snow

How to Estimate Snow Depth over Sea Ice?

Until recently, only the Warren 1999 climatology

[Warren et al (1999). Snow Depth on Arctic Sea Ice Journal of Climate, 12(6), 1814-1829.]

Data from 1940-1990 measurements !

Modified Warren Climatology to Account for Clim Change

How to Estimate Snow Depth over Sea Ice ?

Models of Snow Accumulation

Using:

- Re-analyses models (MERRA2, ERA5, ...) for snow precipitations and wind
- Sea Ice Drift

Main Available Snow Depth Products

PIOMAS	1980-now	NH
GIOMAS	1980-now	NH+SH
NESOSIM	2002-2011 2012-now	NH
SnowModel-LG	1980-2018	NH
		ata

How to Estimate Snow Depth over Sea Ice ?

Models of Snow Accumulation

Using:

- Re-analyses models (MERRA2, ERA5, ...) for snow precipitations and wind
- Sea Ice Drift

Multi-frequency Passive Radiometers

AMSR-E (2002-2011) and AMSR-2 (2012-now)

$$GR(37/19) = \frac{Tb_{37} - Tb_{19} - k_1(1 - C)}{Tb_{37} + Tb_{19} - k_2(1 - C)}$$

Main Available Snow Depth Productsc

PIOMAS	1980-now	NH
GIOMAS	1980-now	NH+SH
NESOSIM	2002-2011 2012-now	NH
SnowModel-LG	1980-2018	NH
		, etc.

[Meier et al 2018]	2002-2011 2012-now	FYI only NH + SH
[Rostosky et al 2018]	2002-2011 2012-now	NH

+ [Winstrup LPS 2019]

+ [Braakmann-Folgmann et al 2019]

How to Estimate Snow Depth over Sea Ice ?

Models of Snow Accumulation

Using:

- Re-analyses models (MERRA2, ERA5, ...) for snow precipitations and wind
- Sea Ice Drift

Multi-frequency Passive Radiometers

AMSR-E (2002-2011) and AMSR-2 (2012-now)

$$GR(37/19) = \frac{Tb_{37} - Tb_{19} - k_1(1-C)}{Tb_{37} + Tb_{19} - k_2(1-C)}$$

Main Available Snow Depth Products

PIOMAS	1980-now	NH
GIOMAS	1980-now	NH+SH
NESOSIM	2002-2011 2012-now	NH
SnowModel-LG	1980-2018	NH

..., etc.

[Meier et al 2018]	2002-2011 2012-now	FYI only NH + SH
[Rostosky et al 2018]	2002-2011 2012-now	NH

+ [Winstrup LPS 2019]

+ [Braakmann-Folgmann et al 2019]

ASD Ka/Ku	[Guerreiro et al 2016] [Garnier et al 2021]	2013- now	82°NH+ SH
DuST Ka/Ku	[Lawrence et al 2018]	2013- now	82°NH
Ku/ laser	[Kwok 2020]	2018- 2019	NH

-> motivated bi-frequency polar alti CRISTAL₁₂

Snow Depth from bi-frequency Altimetry

Snow Depth from bi-frequency Altimetry

Saral (LRM Ka)

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

[Garnier et al. in The Cryosphere 2021] 14

Products comparison (example for April 2015)

Comparison against OIB airborne Snow Radar

Comparison against OIB Snow Radar

airborne snow radar from OIB

[Garnier et al, TC 2021] 17

CRISTAL Copernicus Polar Altimeter

First Ka/Ku satellite altimeter ... for 2027

Simultaneous freeboard and snow depth mesurements !

Confidance?

Penetration highly depends on Snow Type !

V.Nandan, J.Stroeve, J.Yackel, ..., MOSAIC, etc. 20

EGO

FYI Snow Penetration correction

21

[Nandan et al, GRJ 2017] Effect of Snow Salinity on CryoSat-2 Arctic First-Year Sea Ice Freeboard Measurements

BGEP mooring (principle schema)

illustration of the principle from hydro-international.com

Penetration correction law in FYI snow layer:

 $\Delta_{S} = 1.4022229 + 0.9114689H_{S} - 0.0437265H_{S}^{2} + 0.00061H_{S}^{3}$

Main priorities (1/3)

- Ka/Ku (p)LRM approach works well ... in Spring over West Arctic basin
- About no snow depth data East of Arctic, in Autumn and Winter, and whole Antarctic
- Operation Ice Bridge has ended -> no more systematic snow depth measurements planned

=> <u>1. Urgent need for reference in-situ data:</u>

- Continuity of **airborne snow radar** measurements (CristalAir?, OIB?, AWI?, ...)
- Alternative lower cost methodologies such as drone-borne snow radar or altimeter

Main priorities (2/3)

- => 2. Need for studies dedicated to Ku/Ka over sea ice and snow
 - Penetration, Sea ice roughness effects on the range (sea ice "SSB"!)
 - SAR, SARin, FF-SAR, ...
 - Simulators
 - Developed adapted model based retrackers

E.g., ESA PolarMonitoring project (2019-2020) over land ice which would need for **a follow on over sea ice**.

Main priorities (3/3)

=> <u>3. Importance to limit delays for the launch of CRISTAL</u>

- CryoSat-2 is already 12 years old (17 years old in 2027)
- no relay => no more Arctic sea ice thickness survey in summer from ~2025

- 1. Snow depth in-situ data
- 2. Retrackers adapted to sea ice (sea ice state bias, snow penetration, SAR/SARin)
- 3. Limit delays for CRISTAL launch: for now keep trying 2027

Thank you !

Annexes

Snow laser/Ku versus Ka/Ku

- 25

Ka/Ku Snow Depth Validation with OIB

Importance of Snow over Sea ice

LEGOS

- snow acts as a thermal insulator
 - => it slows down the growth of the sea ice
- snow acts as an UV reflector
 - => it increases the ice <u>albedo</u>
- snow acts as a light filter
 - => it limits planktonic development under the ice
- snow acts as a gas filter
 - => it limits ocean/atmosphere gas exchanges
- snow increases ice friction
 - => it limits ice breakers progression

1 Key Knowledge Gap [IPCC Special Report of the Ocean and Cryosphere (SROC]) "Snow depth on sea ice is essentially unmeasured, limiting mass balance estimates and ice thickness retrievals"