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Background & Overview1

Data
Operation Ice Bridge (2011 – 2015) and IceSat2 (2018-2020)
Lidar Altimetry was joined to CryoSat2 SARIn point data on a
50m spatial and 10 day temporal join for the whole of GrIS.
Lower quality data was filtered from the dataset. The training
and test data is split by time: 2015 (OIB) and 2020 (IS2) data
is reserved as unseen test data and the remainder used for
training.

Model Construction
A supervised regression Neural Network was constructed
with flexible configurations to cater for variable inputs,
neuron depth, layer width, and other features such activation
function and layer normalisation.

Grid Search Optimisation
A traditional grid search was used to select the final models
which optimised the Huber loss function.

Model Assessment
Simple model accuracy statistics were used to assess model
accuracy on unseen test data. The model was run against all
historic CryoSat-2 SARIn data and 2km, monthly gridded
products were produced showing the model-predicted
adjustment between Lidar and Ku-band SARIn altimetry.

Data & Methods2

Performance Against Unseen Test Data
Using the neural network, the mean adjustment was predicted to within 0.1cm (MAD 1.8m, RMSE
3.4m). Complex LIDAR-SARIn adjustments were better reproduced by the neural network when
compared to a simple, multi-variate, ordinary least squares model.

Spatial and Temporal Analysis
The trained model was used to predict sub-waveform level LIDAR-SARIn point adjustments and the
resulting predicted adjustments were then converted into monthly, 2km gridded products. These
products, and the temporal changes therein,

Results & Discussion3

Conclusions & Roadmap4

• A neural network was used to predict sub-waveform level LIDAR-SARIn adjustments
• Mean observations were predicted to within 1cm (MAD 1.8m, RMSE 3.4m)
• Broad spatial and temporal trends were recreated
• Further studies required to address limitations
• A myriad of potential applications to existing and future missions such as:

• CRISTAL
• Cryo2Ice
• Airborne campaigns
• Other multi-band sensor data

3

Land ice is declining globally, raising sea levels and impacting 
glacial risks and access to fresh-water in high-mountain 
glaciers regions. Land-ice monitoring via Earth Observation 
methods in general, and altimetry in particular, are essential 
for tracking the current status of ice volume change and its 
evolution. 

The CryoSurf project applied a Deep Neural Network to 
combine elevation measurements acquired by ESA’s CryoSat-
2, SARIn waveform parameters, NASA’s Operation Ice Bridge, 
IceSat-2, and surface 
conditions over the 
Greenland Ice Sheet 
(GrIS). We explore 
the difference 
between radar and 
laser altimetry and 
its relationship 
with surface 
condition, the 
impact of penetration 
of radar waves into snow 
and firn, and the respective 
measurement uncertainties. 
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were then compared to the available
observations and to a snowfall estimate from
the MAR model.

Model predicted spatial trends were seen to
broadly align to both observed and expected
presence and absence of volume scattering
from physical processes. E.g. general surface
scattering on northerly aspects versus an
increase in volume scattering on southern
aspects. Similarly, an increase in surface
scattering through months of reduced
snowfall was both predicted and observed.

Limitations
Not all localized observations recreated (e.g.
King Frederick VIII Land). GrIS-wide magnitude
of LIDAR-SARIn differences were not fully
recreated for regional or seasonal trends. The
exact source of limitation was not identified
but most likely due to one of:
• The neural network lacking sufficient inputs

to capture physical process
• Signal-to-systematic-error and signal-to—

stochastic-error ratio too low (e.g. the
magnitude of processing errors largely
outweighs the magnitude of effects
representative of penetration and volume
scattering)
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Figure 2. a) A summary of observed and modelled LIDAR-SARIn differences as a function of input parameters for unseen test data points across the GrIS. The distribution of observation 
counts per parameter is shown in the grey histogram for each plot. b) LIDAR-SARIn differences as a function of distance to POCA shown per quantile slice of coherence and powerdB
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Figure 3. Observed and predicted LIDAR-SARIn differences from February 2020, August 
2020, and their change over a 6 month window with a comparison to accumulated snowfall 

from the MAR model

Figure 1. A representation of RADAR vs LIDAR 
surface penetration
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