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= Using deep learning with CryoSat interferometric radar altimetry
% to adjust elevations and map surface penetration (CryoSurf)
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Background & Overview Results & Discussion

Land ice is declining globally, raising sea levels and impacting Performance Against Unseen Test Data

glacial risks and access to fresh-water in high-mountain Using the neural network, the mean adjustment was predicted to within 0.1cm (MAD 1.8m, RMSE
glaciers regions. Land-ice monitoring via Earth Observation 3.4m). Complex LIDAR-SARIn adjustments were better reproduced by the neural network when
methods in general, and altimetry in particular, are essential compared to a simple, multi-variate, ordinary least squares model.
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between rada ra nd counts per parameter is shown in the grey histogram for each plot. b) LIDAR-SARIn differences as a function of distance to POCA shown per quantile slice of coherence and powerdB
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Model Assessment

Simple model accuracy statistics were used to assess model
accuracy on unseen test data. The model was run against all
historic CryoSat-2 SARIn data and 2km, monthly gridded
products were produced showing the model-predicted
adjustment between Lidar and Ku-band SARIn altimetry.

Conclusions & Roadmap

A neural network was used to predict sub-waveform level LIDAR-SARIn adjustments
 Mean observations were predicted to within 1cm (MAD 1.8m, RMSE 3.4m)
* Broad spatial and temporal trends were recreated
* Further studies required to address limitations
A myriad of potential applications to existing and future missions such as:
 CRISTAL
* Cryo2lce
 Airborne campaigns
Other multi-band sensor data
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