Reconstructing the spatial and temporal elevation signals from ICESat-2

Karina Nielsen¹, Heidi Ranndal¹, Ole B. Andersen¹

¹National Space Institute, Technical University of Denmark (DTU)

DTU Space National Space Institute

Motivation

 It is known that residue geoid signals may be present on large lakes after correcting the water surface elevations for the geoid

DTU

- Previously modeled using CryoSat-2 and SARAL/AltiKa (Jiang at al., 2019)
- However, this is very clear with ICESat-2
- The residue signal affects the water level time series especially for geodetic altimetry missions

2

• The residue signal deteriorates the time series

3 DTU Space

DTU

Motivation

- We can do a descent job when just considering one track
- A common reference is needed if more tracks are used to reconstruct the water level time series
- To improve the water level time series based on geodetic mission like CryoSat-2 we must be able to minimize the effect of the residue signal
- DTU Space OSTST, Venice November 2022 3.11.2022 Assuming that the spatial signal is constant in time, we can try to separate

Spatial-temporal Model

• We assume that the ICESat-2 observations can described as

$$H_{i,t} = \omega_i + \mu_t + \epsilon_{i,t}$$
 where $\epsilon_{i,t} \sim N(0, \sigma_{obs}^2)$

- Here t = 1, ..., N where N is the number of times and i = 1, ..., M, where M is the number of cells in the spacial grid
- Here μ is a random walk and ω is a Gaussian Markov random field described as

$$\begin{split} \mu_t &= \mu_{t-1} + \eta_i \quad \text{where } \eta_t \sim N(0,\sigma_{RW}^2) \\ & \omega \sim N(0,\sigma_\omega^2 Q^{-1}) \end{split}$$

- The precision matrix Q (inverse covariance matrix) is defined as $Q = Q_0 + I$
- Here Q_0 specifies the neighbor structure and is given by

$$Q_0(i,j) = \begin{cases} \phi \# \text{neighbors}, & \text{if } i = j, \\ -\phi, & \text{if } i \sim j, \\ 0, & \text{otherwise.} \end{cases}$$
(1)

- Here ϕ is a parameters that controls the correlation
- 5 DTU Space

Pratical Workflow

- Project ICESat-2 data to UTM coordinates
- Define a grid for the spatial solution, must define spatial resolution
- Use e.g. lake shapefile to define lake boundary in the grid
- \bullet Set up the neighbor structure, the Q_0 matrix
- Assign measurements to grid cells
- Use model (previous slide) to estimate residual grid and time series
 - Model is implemented in R via the R-package "TMB" http://tmb-project.org

Spatial reconstruction of ICESat-2 water levels

EGM2008 correction lake Tanganvika

EGM2008 correction lake Tanganvika

- Left: 3 x 3 km grid cells, Right: 1 X 1 km grid cells
- In the 1 X 1 km solution we see the tracks. Correlation in the data is not accounted for
- DTU Space 7

Temporal reconstruction of ICESat-2 water levels

Time in deimal years

DTU

Corrected water level time series

• Still some residue signal, but much better than before

9 DTU Space

Corrected water level time series CryoSat-2 13 1 769 2020.5 2021.0 2021.5 2020.0 2022.0 772.0 Sentinel-3/ Elevation w.r.t. EGM2008 771.0 770.0 2020.0 2020.5 2021.0 2021.5 2022.0 SARAI 771.0 770.0 769.0 2020.5 2021.0 2021.5 2022.0 2020.0 Time in decimal years

• The improvement is more evident when zooming in

• The lighter colors show the water level time series before the correction

10 DTU Space

- Set up a spatial-temporal model to describe the ICESat-2 water levels
- Apply spatial grid to correct the water level from other altimetry missions
- We obtain improved water level time series from CryoSat-2, AltiKa, and Sentinel-3
- More investigations are needed to improve the model
- To space agencies: Missions in a geodetic orbit (like CryoSat-2, ICESat-2) are essential for hydrology

Thank you, questions?

Please, consider submitting to EGU 23-28 April 2023

G3.2 EDI*

Advances in methods and applications for satellite altimetry .

Co-organized by CR2/OS4

Convener: Karina Nielsen Q | Co-conveners: Louise Sandberg Sørensen Q, Bernd Uebbing^{ECS} Q

Abstract submission

https: //meetingorganizer.copernicus.org/egu23/sessionprogramme#G3