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Greenland’s contemporary mass balance UNIVERSITY OF LEEDS
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Cumulative Greenland mass anomalies. The IMBIE Team, 2020
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Greenland’s surface mass balance TV e T

Accumulation zone
. % W
Surface mass balance (SMB) net Bl oy =
balance between gains (snowfalll, e o i

rainfall) and losses (runoff, sublimation
drifting snow erosion) at ice sheet
surface...

lllustration of processes contributing to Greenland SMB. Lenaerts et al., 2019



Greenland’s surface mass balance

Surface mass balance (SMB) net
balance between gains (snowfall,
rainfall) and losses (runoff, sublimation

drifting snow erosion) at ice sheet
surface...

... the recent decline has primarily
been driven by increased runoff.
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Annual runoff modelled by RACMO. Noél et al., 2019
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Greenland runoff UNIVERSITY OF LEEDS

Image Credit: NASA MODIS







The need for Earth Observation of SMB
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Global climate models historically
used in sea level projections have
not captured recent interannual
variability in SMB and

Bl underestimated Greenland’s sea
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Partitioning CryoSat-2 elevation changes

e b) IMAU-FDM T c) CS2-IMAU-FDM %G54
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Seasonal cycle of melting and snowfall UNIVERSITY OF LEEDS
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Seasonal cycle of melting and snowfall

Ablation zone time series

Elevation change (m)

-7

CryoSat-2

|

I

IMAU-FDM (m)

'
—

'
N

_RMS =23 cm

-4

-3

2 -1
CryoSat-2 (m)

2011

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Year

Py
ﬁ
H

UNIVERSITY OF LEED

Runoff area
Ablation area



Seasonal cycle of melting and snowfall

Seasonal changes between
CryoSat-2 and firn modelling
also agree well in ablation zone
— indicates that SMB processes
are the primary driver

Interannual variations in e.g.
ice-sheet wide summer
elevation changes reflect
variations in atmospheric forcing
— summer thinning ~40% lower
on average 2013-2015 (1.2 £
0.4 m) than 2012 and 2019 (1.9
+ 0.5 m)

Seasonal elevation changes in ablation
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A CryoSat-2 record of Greenland runoff

UNIVERSITY OF LEEDS

Because observed seasonal changes are driven by SMB, and dominant process in summer is melting,
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A CryoSat-2 record of Greenland runoff

Video Credit: Planetary Visions



A CryoSat-2 record of Greenland runoff

_ CryoSat-2 ! !
RACMO2.3p2
| MARV3.11
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Year

Average runoff from CryoSat-2 (2011-2020): 357 + 58 Gt/yr

Good agreement with runoff estimates derived from RACMO2.3p2 (rmsd 47 Gt/yr) and MARv3.11 (rmsd
60 Gt/yr)



Increased variability in Greenland runoff
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Close agreement with firn modelling sugges

. CryoSat-2 can provide observation tru ff «. t scale.

Runoff estimated by CryoSat-2 bg ! i ':0i20 21% higher and 60% more variable than
previous three decades. |

Observational approach allows runoft 1easured in near real-time, and support
improvements in model capability.

Work ongoing to extend methods to ot @%‘etﬂbrocesses e.g. snowfall varig
improve spatial resolution. -
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