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In one line: SSHa variability i1s analyzed considering the observations’ uncertainty. The spectral slope break that marks a regime shift is observed over most of the global ocean.

1. Context and Motivations 2. Spectral estimates and slope rupture

Recent evidence from along-track Sea Surface Height observations (1Hz) ||1. Along-track SSH anomalies (SSHa) are subsampled inside 15°by 15° boxes.
highlights the capabillities of current generation altimeters to characterize the 2. Average spectra are obtained for all tracks and cycles within each box
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ocean variability at wavelengths below 100km™=. 3. Noise levels is estimated for A < 30 km wavelength®.

Recent analyses of models and in-situ data show that internal gravity waves 4. Spectral slopes are fitted on the denoised spectrum, over a variable A range?2.
(IGW) dominate the small-scale SSH spectrum, particularly in the tropics and
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Small Scale Slope from S3 Spectral Slope Figure 2. SSH spectral estimates (gray lines; 95% CI is indicated in gray shading) inside a 15x15 box located at the Northeastern
Figure 1. Spectral slope estimates for S3A: (a) meso- and (b) small scale wavelength ranges. (c) Zonal averages of | Pacific. Result of the bi-linear model is plotted in blue. Intercept between the meso and small-scale slopes and the observability are
(a) and (b); Jason-3 data is also included. also plotted.

3. Mesoscale to small-scale slope intercept

Intercept Wavelength Basin scale averages
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L - Overall, these results agree with the most recent modeling
-28asghaldistribution . results that include tidal forcing®.

- Intercept values during summer are longer than during winter,
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5. Conclusions

- The bi-linear fit results are consistent with previous modeling and in situ results: shallow slopes due to large internal tides/IGW In the tropics, close to sQG/QG In the
extra-tropics and small-scale slopes between 1.5 and 2 in the tropical regions.

- It Is possible to estimate the meso- to small-scale intercept wavelength from alongtrack altimetry. The spatial coverage is limited due to uncertainties associated with the
observations (SNR>1) and low mesoscale slopes In the tropics.
- Intercept wavelengths have the lowest values in the high mesoscale energy regions, growing towards the regions where IGW are more energetic than mesoscale eddies
(inter-tropical band and equatorial region, eastern boundaries).
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