

Blending AIS data and altimetric measurements to estimate sea surface currents in the Gulf of Mexico

Clément LE GOFF^a, Brahim Boussidi^a, Solène JOUSSET^b, Sandrine MULET^b, Gerald DIBARBOURE^c

^a eodyn, Brest, France
^b CLS Toulouse, France
^c CNES, Toulouse, France

Method

Asumption: the vessels shares the same current in a spatio-temporal windows typically 1/8° and 24h

$$\begin{cases} V_{sog_{1}}^{*}sin(\varphi_{cog_{1}}^{*}) = V_{stw_{1}}sin(\varphi_{th_{1}}^{*}) + u_{os} \\ V_{sog_{1}}^{*}cos(\varphi_{cog_{1}}^{*}) = V_{stw_{1}}cos(\varphi_{th_{1}}^{*}) + v_{os} \\ \vdots & \vdots \\ V_{sog_{n}}^{*}sin(\varphi_{cog_{n}}^{*}) = V_{stw_{n}}sin(\varphi_{th_{n}}^{*}) + u_{os} \\ V_{sog_{n}}^{*}cos(\varphi_{cog_{n}}^{*}) = V_{stw_{n}}cos(\varphi_{th_{n}}^{*}) + v_{os} \end{cases}$$

Optimal Interpolation

$$\gamma(\Delta_s, \Delta_t) = R + \sigma^2 \left(1 - \exp\left(-\frac{\Delta_s}{L}\right) \exp\left(-\frac{\Delta_t}{T}\right) \right)$$

$$x^{s} = x^{b} + K\left(y - Hx^{b}\right),$$
$$P^{s} = B - KHB,$$
with the gain $K = BH^{\top} \left(HBH^{\top} + R\right)^{-1},$

Figure 6. (a) Empirical and theoretical spacial variagrams of the zonal and meridional current components. (b) Corresponding temporal variagrams

Helmholtz-Hodge Decomposition

More details and explanations here

Monitoring the Greater Agulhas Current With AIS Data Information

Clément Le Goff¹ ^(D), Brahim Boussidi¹ ^(D), Alexei Mironov¹, Yann Guichoux¹, Yicun Zhen² ^(D), Pierre Tandeo² ^(D), Simon Gueguen³, and Bertrand Chapron⁴ ^(D)

¹eOdyn Brest, Plouzané, France, ²IMT Atlantique, Brest, Plouzané, France, ³Hytech-Imaging Brest, Plouzané, France, ⁴Ifremer LOPS Brest, Plouzané, France

Example of validations

Gulf of Mexico

Gulf of Mexico

Tracking Loop current eddy from the AIS derived field Divergent free part (OS_r) Smoother trajectory of the eddy is obtained with the DUACS field

Tracking is done through the use of AMEDA (Le Vu et al 2018)

perpendicular to the trajectory. The gradient gives the

Gulf of Mexico

Tropical Storm, Delta, October the 8th,2020

Values of the SST anomaly along the Transect perpendicular to the trajectory. The highest negative anomalies correspond to the highest divergent transport to the right of the wake

Multiscale Inversion for Ocean Surface Topography (MIOST) tool

$$\mathbf{x}_{geo} = \Gamma_{geo} \eta_{geo}$$

Temporal decorrelation scale: ~10 days (depend on the area as in DUACS)

Spatial extension : 80 to 800 km

Ubelmann, C., Dibarboure, G., Gaultier, L., Ponte, A., Ardhuin, F., Ballarotta, M., & Faugere, Y. (2021). Reconstructing ocean surface current combining altimetry and future spaceborne Doppler data. *Journal of Geophysical Research: Oceans, 126*, e2020JC016560. https://doi.org/10.1029/2020JC016560

Validation with independant drifters drogued and undrogued (slippage corrected) 2019-2020

name	U correlation	U RMSE [cm/s]	Improvement U RMSE [%]	V correlation	V RMSE [cm/s]	Improvement V RMSE [%]
SURCOUF	0,88	16,68		0,88	17,03	
AIS OI	0,71	27,91		0,72	25,87	
MIOST AltiOnly	0,87	17,65		0,86	18,89	
MIOST Alti+AIS	0,88	16,62	5,8 %	0,87	17,77	5,9 %

- 5,8% improvement on U
- 5,9% improvement on V

Validation with the independent altimeter SARRAL-AltiKA (all scales) **RMS** of differences

Improvement over independent satellite in some areas and slight degradation of RMS of differences in some areas (ports?) compared to Miost with Altimetry only

RMSE reduction on all scales

RMSE [mm]					
REF	45,8613				
MIOST Alti+AIS	45,5517	-0.68%			

[number]

Conclusion AIS derived Current

- Helmholtz-Hodge Decomposition helps to reveal the Physical content of the AIS derived current
- There is still noise and the divergent part is sometimes over-estimated (not realistic)
- Difficulties to separate the physical content from the noise (no Gaussian, highly correlated error, stormy weather conditions)
- Inhomogeneity in the maritim traffic

Conclusion Merging

- Merge of AIS current data with successful altimetry: reconstruction of SSH and U and V current fields
- Improvement of currents compared to altimetry alone (comparison with total drifter currents)
- SSH improvement compared to altimetry alone (comparison with an independent altimeter)
- Errors associated with AIS inflated currents → need to improve to better take into account the AIS data signal