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Figure 1: Time series of mass changes in GIS
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Mouginot et al., 2019; The IMBIE Team, 2021) maps of the run GAI (b) from January 1998 to December 2011 (mm/yr). product) (a) and the simulated SLA trends maps from the run GAI (b) from
for the periods 1972-2016, 1332-2018, and The global mean sea level time series has been removed as well ~ January 1993 to December 2018 (mm/yr). The global mean sea level time
1992-2020 (IPCC, ARS, fig.8.16a). as the annual and semiannual signals. series has been removed as well as the annual and semiannual signals.
OBJECTIVES Trends maps from 1998 to 2011 of GIS impact on SSH, steric, and manometric sea level RESULTS
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Figure 5: Maps of GIS impact (GAI-Al) on SSH trends (a) and on its decomposition in steric (b) and manometric trends (c). changes.
GIS impact on the halosterlc and thermosteric sea level trends from 1998 to 2011
100 The decomposition of the steric sea level trends into their halosteric and

§§ thermosteric components shows that the impact of GIS melting is fully driven by

fgfg salinity changes (i.e halosteric sea level) (Figure 6).

?;g _ Moreover, this halosteric impact is mainly 0

' f  restricted to the upper 300m of the ocean -

vy as it can be seen by the strong similarities -

. between the SSH, steric and halosteric maps

Z‘E and the adjacent figure. el

lgﬁg Figure 7: Vertical distribution of steric, halosteric, and ;. E

| thermosteric trend contributions averaged over the box :
FIQUFG b: Maps of GIS |mpact on the UppEr 300m halosteric (8) and defined in the Canada Basin. 0000 0001 0002 0003 0004 0005 0006
thermosteric (b) sea level trends over 1998-2011 in mm/yr. Anomaly (mm.yr-1.m-1)
CONCLUSION PERSPECTIVES
There are strong SSH linear £rends over 1998-2011 in the BG. It suggests that GIS melting can We plan to calculate T and S budgets in the BG to assess the relative
impact regions far away from its coast. In addition, this is a purely halosteric response importance of the different fuxes and the origin of the freshwater
reflecting the accumulation of freshwater in the BG. 3fie BG dynamical balance is primarily accumulating in the BG. We will evaluate the impact of GIS melting
driven by atmospheric forcing (Serreze et al., 2006). We hypothesize that seawater advected on sea i&&. We also would like to understand the circulation
into the gyre's interior has been transformed due to GIS melting. Another plausible changes of the gyre and the influence of the shelf seas onit.
mechanism is the modulation of wind stress at the ocean surface by the presence/absence of Finally, we want to assess GIS impact on the stratification of the
sea ice induced by GIS melting (Dewey et al., 2018). Arctic ocean.
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