

Sentinel-6 radiation pressure model analysis

OSTST 2022, Venice, ITALY, 1st november 2022

Flavien Mercier (CNES), Alexandre Couhert (CNES), John Moyard (CNES), Robert Cullen (ESA)

Introduction

Pre-launch SRP model from initial documentation

- some hypotheses on the geometry from various sources
- +- y cavities external surfaces (x and z) assumed totally diffuse
- solar array specularity equal to 0, unknown absorbed energy

SRP model from updated documentation

(JC-TN-ESA-SY-0420-S6-POD-Context-2.1-20220122-No-ref.pdf)

- detailed materials information (12 panel model)
- new information on solar array (absorbed energy)
- better modelling hypotheses (thermal exchanges)

Comparisons of the two models (using in orbit observations : adjusted empiricals)

Update the new model using these in orbit results

Pre launch SRP model

- X ·	- 3	. 560	-1.	Ο.		•••0.		0.45	5 · · · ·	0.12	0.43	3	0.180	· · · · · 6	0.040	0.780
+x ·	.3	.620	1.	Θ.		•••0.		0.49		0.04	0.47		0.192	•••••6	.808	0
GSa	8	670	0.	-0.(6157	0	7880	Θ.		0.14	0.86	3	Θ	· · · · · 6	.615	0.385
GSb	8	.670	0.	0.0	6157	- 0	7880	Θ.		0.14	0.86	5	0.0.0	•••••6	.615	0.385
- Z ·	- 3	.170	0.	Θ.				0.44	1 · · · ·	0.02	0.54	1 · · · · ·	0.114	•••••6	.627	0.259
+z ·	15	.370	Θ.	0.		· · · 1.		0.35	5	0.08	0.57		0.066	•••••	.724	0.210

normal

visible (Ks,Kd,Ka)

IR (Ks,Kd,Ka)

specular, diffuse, absorbed

No specular effect on the Solar array Ka is too important (cell efficiency ~10 %)

Different surfaces in +x or -x, dissymetry

Cavities surfaces added in +x and -x the surfaces are not correct for drag modelling

Cavities surfaces added on +z

Very important Normal bias

Normal 1/rev signatures

In plane behaviour not correct the force is too small (solar array ?, z surfaces ?)

Units : equivalent absorbing surface (1 m2 <--> 4. 10-9 m/s2)

4) © cnes

cnes

- x · · ·	3.35	· · · · · - 1.	•••••••••••••••••••••••••••••••••••••••	Θ.	Θ.	50 0.50		0.21	0.79 0.79
+x · · ·	2.99	1.	•••••••••••••••••••••••••••••••••••••••	Θ.	Θ.	50	• • • • • • • • • • • • • • • • • • • •	0.21	0.79 0.79
GSa	8.65	0.		6157 -0.	7880 0.	0.80	0.20) · · · · · · · Θ. · ·	1.0 0.
GSb	8.65	Θ.	•••••••••••••••••••••••••••••••••••••••	6157 -0.	7880 0.	0.80	0.20	ο	1.0 0.
- z · · ·	2.61	Θ.	•••••••••••••••••••••••••••••••••••••••		Θ.	45	· · · · · · · • • • • • • • • • • • • •	0.16	0.84 0.
+z · · ·	15.48	•••••Θ.	· · · · · · · · · · • • • • • • • • • •	· · · · · · · · · · 1.	Θ.	35	• • • • • • • • • • • • • • • • • • •	0.12	0.880.

Hypotheses :

- cavity effect in +z, totally diffuse
- +z surface, no absorbtion
- solar array absorbtion 20 %
- +-x surfaces covered with MLI, no absorbtion

New SRP model, flight results

cnes . . .

Better in-plane results important 1/rev Normal Normal bias smaller

6 cnes

New SRP model, flight results, test x cavities

· · cnes · · ·

Cavities model in +-x add an absorbing surface

Not a good idea, the in-plane results are worse

Diffuse characteristics (instead of absorbing) even worse

No effect on the Normal axis

New SRP model, partial derivatives

cnes .

Update Ks on the +-x surfaces to improve Nsin

8) © cnes

New SRP model, partial derivatives

First update

· · · · cnes · · · ·

Changes :

Ks, Ka on +x and -x surfaces +z totally diffuse

10 © cnes

Second update

cnes · · · ·

Changes :

Ks, Ka on +x and -x surfaces +z totally diffuse Ks on solar array

1) © cnes

- x · · ·	3.35	• • • • • • • • • • • • • • •	· · · · · · · • • • • • • • • • • • • •	0	0.50	0.50	Θ	0.21	0.79 0.
+x · · ·	2.99	• • • • • • • • • • • • • • • • • • • •	· · · · · · • • • • • • • • • • • • • •	· · · • • • • • •	0.50	0.50	0.0	0.21	0.79 0.
GSa	8.65	· · · · · · · • • • • • • • • • • • • •	-0.6157	-0.7880	· · · · · • • • • • · · · · · · · · · ·	0.80	0.20	••••••••••••••••••••••••••••••••••••••	1.0 0.
GSb	8.65	• • • • • • • • • • • • • • • • • • •	0.6157	-0.7880	· · · · · 0. · · · · · ·	0.80	0.20	••••••••••••••••••••••••••••••••••••••	1.0 0.
- Z · · ·	2.61	• • • • • • • • • • • • • • • • • • •	· · · · · · · • • • • • • • • • • • • •	••-1.•••	0.45	0.55	· · O. · ·	0.16	0.84 0.
+z · · ·	15.48	· · · · · · · • • • • • • • • • • • • •	· · · · · · · • • • • • • • • • • • • •	•••1.•••	0.35	0.65	· · O. · ·	0.12	0.88 0.

Ks,Ka modification for surfaces +x and -x solar array characteristics, specular modified +z surface fully diffuse

-x····3.35····	···1. · · · · · · · · · 0. · ·	· · · · · · · · · · · · · · · · · · ·	0.20	0.80	9 0.2	1 0.79 0.
+x · · · 2.99 · · · ·	1 0	· · · · · · • • • • · · · · · · · · · ·	0.80	0.20	9 0.2	0.79 0.
GSa 8.65	00.615	7 -0.7880	0.30	0.50	9.20 0.	1.0 0.
GSb · · · 8.65 · · ·	0.615	7 0.7880	0.30	0.50	9.20 0.	1.0 0.
-z···2.61···	0	····-1. · · · · ·	0.45	0.55	9 0.1	6 0.84 0.
+z · · · 15.48 · · ·	0 0	· · · · · 1. · · · · ·	Θ	1.00	9	1.00 0.

Remark : this model absorbs the incoming energy only via the solar array, correct for energy balance, in reality, there are more complex exchanges between the external panels and the cavity

12 © cnes

Discussion

Updating the model using information on the 1/rev accelerations is efficient but still some anomalies :

- the in plane and out of plane behaviour cannot be simultaneously corrected
- very important Normal bias

This approach does not garantee an improvement in the radial direction (altimetry)

Error estimation : radial accelerations spectrum

- no eclipse : mainly 1/rev, higher harmonics have negligible effects
- eclipse : most important contributions are from the eclipse transitions, producing 2/rev, 3/rev ... harmonics

the amplitude of the SRP acceleration around the eclipses must be correct (mainly due to +z)

--> the model should not have significant changes in adjusted 1/rev when eclipses begin (around 55 degrees)

Spectral analysis, SRP harmonics

R, T, N accelerations

These two arcs are around the β value where eclipses begin (~55 degrees)

The SRP harmonics amplitudes are due to the eclipse transition

cnes

Spectral analysis, radial displacements harmonics (1)

R, T, N accelerations, radial response, begin of eclipse period

2/rev, main harmonic : here, the SRP contribution is below 5 mm amplitude the albedo/ir response is negligible

cnes ·

. .

Spectral analysis, radial displacements harmonics (2)

R, T, N accelerations, radial response, β value close to 0 (sun close to the orbital plane)

2/rev, main harmonic : here, the SRP contribution is higher (1.4 cm) the albedo/ir response is negligible

Radial 2/rev and 3/rev due to SRP acceleration :

17) © cnes

The new model (from the last version of the documentation) behaves correctly, better than the pre-flight model for the in-plane behaviour

- This model is not correct for the normal bias improvements needed :
 - better modelling of the solar array energy exchanges (external panels)
 - how to handle the +-y cavities in a simple model?

Error analysis

the Albedo/IR harmonics effects are negligible (2/rev, ...) the 2/rev term is the main contributor of the SRP to the radial performance (1/rev errors are handled by the empiricals) this term is important for the eclipse cases, for high β values

The current model is simple (6 surfaces), but needs an empirical constant normal bias per arc the remaining 1/rev errors stay below 1 m2 equivalent acceleration (4. 10-9 m/s2)