EMD filtering applied to LRM 20 Hz sea level anomaly observations

F. Nencioli¹,, M.-I. Pujol¹, N. Picot², G. Dibarboure² and Y. Quilfen³

¹ Collecte Localisation Satellites, ² CNES, ³ Ifremer

2022 OSTST, 2022-11-01

fnencioli@groupcls.com

Context

- 20 Hz along-track LRM altimetry observations collected at a spatial resolution of 300 m
- Possibility to investigate processes at spatial scales
 < 100 km
- Limitations due to "hump artefact" in the sea surface height (SSH) spectra at scales between 3 to 100 km
- Artefact due to to inhomogeneities in backscatter strength within the LRM footprint
- Induced retracking errors which are smoothed along the satellite track
- Spectral hump can already be mitigated by:
 more restrictive editing algorithm
 - high-frequency specific corrections, such as the highfrequency adjustment (HFA)

PO FRIETRALISATION SATELL

Objectives

- The the Empirical Mode Decomposition filter (EMD) is a novel filtering method
- Specifically designed for the analysis of non-stationary and non-linear signals

Assess the effectiveness of the EMD filter in mitigating the impact of the hump

<u>Data</u>

20Hz Jason-3 observations from cycle 20 From 23 Aug to 2 September 2016 Along-track Geophysical Data Record (GDR) product

DO EDTE LIDCALISATION SATELLIT

Empirical Mode Decomposition (EMD): method overview

Algorithmic method (not based on mathematical theory)

- 1. Identify local minima and maxima of the input signal
- Define upper and lower envelops through interpolation (spline) of local extrema
- 3. Compute the average of the two envelopes (dashed line)
- 4. Subtract this mean from the raw signal
- 5. Repeat 1 to 4 for a fixed number of iterations to identify the Intrinsic Mode Function (IMF)

Modulations by highest frequencies isolated as AM/FM function

Empirical Mode Decomposition (EMD): method overview

Lots of parameters/options to be tuned by the user

Algorithmic method (not based on mathematical theory)

- 1. Identify local minima and maxima of the input signal
- Define upper and lower envelops through interpolation (spline) of local extrema
- 3. Compute the average of the two envelopes (dashed line)
- 4. Subtract this mean from the raw signal
- 5. Repeat 1 to 4 for a fixed number of iterations to identify the first Intrinsic Mode Function (IMF)

Modulations by highest frequencies isolated as AM/FM function

- Repeat the process to identify successive IMFs at progressively lower frequencies
- Process halted when no more local minima/maxima are found

DO FOTE LICALISATION SATELLITE

Signal reconstructed using significant portion of IMFs

EMD: Noise Energy and Denoising

> EMD denoising based on identifying IMF1 noise energy and propagating it to other IMFs

- The noise (n_1) is identified from the first IMF based on wavelet denoising analysis
- Noise time series is used to compute the noise Energy of the first IMF (E1) using the equation
- *E1* is then propagated to the *n*-th IMF using the relation
- *En* is used to define the noise threshold *Tn* to denoise the IMF n according to the equation
- IMF peaks (max/min) with absolute values below the threshold T(n) are considered noise and removed from the signal reconstruction
- The signal is reconstructed using the equation $y(t) = \sum_{i=M_1}^{M_2} h^{(i)}(t) + \sum_{i=M_2+1}^{L} h^{(i)}(t) + d(t)$
 - □ IMF<M1 are not used to reconstruct the signal (only noise, very low SNR)
 - \square M1<=IMF<=M2 are denoised

Initial parameter used

- □ IMF>M2 are used without denoising (very large SNR)
- EMD denoising repeated several times (20 iterations) shuffling the initial noise timeseries (CIIT method)

$$A = 0.7$$
 2.5 < T_n < 3 $M_1 = 1$ $M_2 = 3$

 $E_n = \frac{E_1}{0.719} 2.01^{-n}$

 $E_1 = \left(\frac{median|n_1|}{0.6745}\right)$

$$T_n = A\sqrt{E_n * 2logN}$$

$$T_n = A\sqrt{E_n * 2logN}$$

on
$$T_n = A\sqrt{E_n * 2lo_n}$$

EMD: Noise Energy and Denoising

About peak selection

- □ For each IMF retained ony peaks above noise threshold
- □ Each IMF consists of flat portion + various peaks

IMFs from Jason-3 Cycle 20 observations

- IMF1 to 3 seem likely pure noise
- IMF4 to 6 within the hump portion of spectra

(Spectra computed on ~1500 km long segments)

IMFs from Jason-3 Cycle 20 observations

- IMF1 to 3 seem likely pure noise •
- IMF4 to 6 within the hump portion of spectra .

(Spectra computed on ~1500 km long segments)

120°

-0.025

0.000

SLA.IMF 08

-0.050

-0.075

120°V

0.050

0.075

0.025

Along-track SLA for a given IMF

IMF8 Variability associated with main ocean current systems => physical signal to be retained

IMF2

Uniform

Signal reconstruction: Number of denoised IMFs (M2)

Data & Method

- J3 20Hz observations, Cycle 20
- CIIT method (denoised IMF1+ noise shuffle)

Please disregard this portion of the spectra

Due to a bug (now fixed!!!) in data preprocessing

Signal reconstruction: Number of denoised IMFs (M2)

Data & Method

- J3 20Hz observations, Cycle 20
- CIIT method (denoised IMF1+ noise shuffle)

Increasing number of denoised IMF

 Flat portion of noise spectra shifted further towards longer wavelengths (~50 km)

Signal reconstruction: Number of denoised IMFs (M2)

Data & Method

- J3 20Hz observations, Cycle 20
- CIIT method (denoised IMF1+ noise shuffle)

Increasing number of denoised IMF

• Hump between 100 and 50 km persists, but spectral energy down to noise level

EMD First conclusions

- □ EMD ineffective at removing spectral hump
- □ To be used in synergy with HFA
- First IMF all noise => no wavelet decomposition (IIT method instead of CIIT)
- □ Signal reconstructed only using signal starting from IMF 3
- □ IMFs 3 to 6 denoised

Bug fixed!!!

EMD First conclusions

- □ EMD ineffective at removing spectral hump
- □ To be used in synergy with HFA
- First IMF all noise => no wavelet decomposition (IIT method instead of CIIT)
- □ Signal reconstructed only using signal starting from IMF 3
- IMFs 3 to 6 denoised
- Following the noise Energy relation...
- ... up to IMF5 still significant noise contribution

IMF1		60% total noise	$E_n = \frac{E_1}{0.719} 2.01^{-n}$
IMF2	34.4% IMF1 noise	20% total noise	0.719
IMF3	17.1% IMF1 noise	10% total noise	
IMF4	8.5% IMF1 noise	5% total noise	
IMF5	4.2% IMF1 noise	2.5% total noise	

Parameters MUST BE defined by the user!!!

Reconstructed signal: Number of denoised IMFs (M2)

Data & Method

- J3 20Hz observations, Cycle 20 Track 10
- CIIT method (denoised IMF1+ noise shuffle)

Larger number of denoised IMFs

• Decreased high frequency content (as expected)

Reconstructed signal: Number of denoised IMFs (M2)

Data & Method

- J3 20Hz observations, Cycle 20 Track 10
- CIIT method (denoised IMF1+ noise shuffle)

Larger number of denoised IMFs

Decreased high frequency content (as expected)

Next slide: Zoom -20 to 0

Reconstructed signal : Number of denoised IMFs (M2)

Data & Method

- J3 20Hz observations, Cycle 20 Track 10
- CIIT method (denoised IMF1+ noise shuffle)

Larger number of denoised IMFs

• Decreased high frequency content (as expected)

Persisting region of large high-frequency oscillations

Reconstructed signal : Track Segmentation

-0.02

120°E

-0.02

180°

0.00

SLA.IMF 13

0 02

120°W

0.02

60°W

0.04

IMF13

Reconstructed signal : Track Segmentation

EMD requires continuous data record

New segmentation

- Per track
- Gap filling
- More segments with long IMFs (>IMF10)
- Same noise level along the full track (no segments)

DO EDTE LIDCALISATION SATELLIT

Reconstructed signal : Noise Shuffle (ITT method)

- Filtered signal reconstructed from averaging the results from 20 EMD denoising replica
- □ For each replica, the noise time series identified from firsts IMF is randomly shuffled
- > Applying the filter consecutive times with the same parameters returns slightly different curves (red and green)

DC FICTE LITCALISATION SATELL

J3 Cycle 020 track 004

Reconstructed signal : Noise Shuffle (ITT method)

- □ Filtered signal reconstructed from averaging the results from 20 EMD denoising replica
- □ For each replica, the noise time series identified from firsts IMF is randomly shuffled
- > The differences (red curve) can be larger than 2 cm (and persist even doubling the number of EMD replicas)

J3 Cycle 020 track 004

Reconstructed signal : Noise Shuffle (ITT method)

- □ Filtered signal reconstructed from averaging the results from 20 EMD denoising replica
- □ For each replica, the noise time series identified from firsts IMF is randomly shuffled
- > The difference (**blue** curve) are of the order ~10% of the removed signal (**red** curve)

J3 Cycle 020 track 004

EMD filtering: the Interval-thresholding (IT) method

□ Can noise shuffling be avoided? Yes , IT method (single EMD replica)

□ More user defined choices on possible EMD methods (not only parameter values):

- 1. Clear iterative interval-thresholding (CIIT): Several EMD replicas (noise shuffle) + Wavelet denoising of first IMF
- 2. Iterative interval-thresholding (IIT): Several EMD replicas (noise shuffle) + No denoising of first IMF (all noise)
- 3. Interval-thresholding (IT): Single EMD replica (no noise shuffle) + no wavelet denoising of first IMF (all noise)

EMD filtering: the Interval-thresholding (IT) method

□ Can noise shuffling be avoided? Yes , IT method (single EMD replica)

□ More user defined choices on possible EMD methods (not only parameter values):

- 1. Clear iterative interval-thresholding (CIIT): Several EMD replicas (noise shuffle) + Wavelet denoising of first IMF
- 2. Iterative interval-thresholding (IIT): Several EMD replicas (noise shuffle) + No denoising of first IMF (all noise)
- **3.** Interval-thresholding (IT): Single EMD replica (no noise shuffle) + no wavelet denoising of first IMF (all noise)

Reconstructed signal : IT method

Data & Method

- J3 20Hz observations, Cycle 20 Track 10
- IT method (no denoised IMF1+ no noise shuffle)

Zoom -20 to -19 Latitude

Reconstructed signal : IT method

Data & Method

- J3 20Hz observations, Cycle 20 Track 10
- IT method (no denoised IMF1+ no noise shuffle)

Results (along-track)

- Sharp angles between smooth curve and peaks
- Peaks associated to retained IMF peaks

Reconstructed signal : IT method

-19.8

-19.6

-19.4

-19.2

- IT method has no replicability issues (no noise shuffle)
- However, issues with smoothness of reconstructed signal
- Problematic for SSH
 => geostrophic
 velocities
- With IIT, reconstructing signal from 20 EMD replicas averages out such discontinuities

EMD: Noise/Signal covariance

- Filtered IIT and IT signals similar but not the same
- IIT noise lower than IT in the spectral bump region

EMD: Noise/Signal covariance

Filtered IIT and IT signals similar but not the same

IIT noise lower than IT in the spectral bump region

Noise computed as signal – filtered

However, spectra of a sum of signals is different than sum of their spectra if there is covariance between the two signals

- Noise removed by IIT methods is more correlated to filtered signal than with IT method (Something to do with averaging iterations from noise-shuffling)
- Part of signal removed?

Conclusions

Spectral Hump

- EMD method very good at removing high frequency noise
- Ineffective for mitigating spectral hump if used alone, but good results in synergy with HFA correction

Method Specifications

- At 20Hz, first IMF can be considered as full noise (no need of wavelet denoising)
- Filter segments of the same track individually might introduce artefacts in the reconstructed signal => fill gaps to filter single tracks as a whole
- IIT method provides a smoother reconstructed signal, but has replicability issues due to noise shuffling (and potential issues with signal/noise covariance to be further explored)
- IT method avoids that, but the reconstructed signal can be characterized by sharp angles where isolated peaks occur
- Lots of paramteres/methods to test and combine => hard to identify the optimal set without a ground truth signal to compare the filter results against

Replicability issue: effect of noise shuffling

- Example of reconstruted signal (orange) from averaging 20 EMD denoised signal from noise shuffling (blue)
 - Average signal from 20 EMD répétitions average out the discontinuities
 - Smoother denoised curve (orange)
 - Nonetheless, some artifact still persist

Reccomendations

Noise shuffling is likely needed to obtain a smooth reconstructed signal
 To be defined:

- How many iterations are needed to have replicable results?
- How much will a higher number of iterations increase computation time?

20Hz Data

Spectral analysis: covariance between signals

covariance (**blue**) at

varying wavelengths

Variance and covariance multiplied by wavelength to make it analogous to energy density spectra
 Since plots are in loglog scale, abs(covariance) was used

Spectral analysis: covariance between signals

covariance (**blue**) at

varying wavelengths

By zooming into the spectral bump region and moving into linear scale:

Noise removed by IIT methods is more correlated to filtered signal than with IT method

Something to do with averaging iterations from noise-shuffling

