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Earlier studies

Dinardo Salvatore, Lucas Bruno, Benveniste Jerome. ‘ Precision improvement of 25% of geophysical estimates over ocean
“CoastalandInland Water SAR Altimetry at 80 Hz', 0STST with 80 Hz sampling (and averaging to 20 Hz), altered SSH spectra
2015

and allowing to see finer scales over inland water targets.
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Tandem Phase Dataset and Azimuth Oversampling to
Better Characterize the Sensitivity of SAR Altimeter Sea
Surface Heightto Long Ocean Waves.” Advances in Space
Research 67, no.1(January 2021): 253-65.
https://doi.org/10.1016/j.asr.2020.09.037.
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Earlier studies

Dinardo Salvatore, Lucas Bruno, Benveniste Jerome. l Precision improvement of 18-25% of geophysical estimates over
“Coastal and Inland Water SAR Altimetry at 80 Hz", OSTST ocean at 40 and 80 Hz posting rate (and averaging to 20 HZ).
2015

Explanation: Waveform power speckle decorrelates faster (150 m) in

Egido, Alejandro, Salvatore Dinardo, and Christopher Ray. ‘ along-track direction than predicted from 300 m resolution.
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Earlier studies

Dinardo Salvatore, Lucas Bruno, Benveniste Jerome. l Slight precision improvement of SSH over ocean with 40 Hz
“Coastal and Inland Water SAR Altimetry at 80 Hz", OSTST sampling.
2015

Explanation: Due to power detection, the point target response (PTR)

Egido, Alejandro, Salvatore Dinardo, and Christopher Ray. ® contains twice the bandwidth, hence oversampling is needed.
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Earlier studies

Dinardo Salvatore, Lucas Bruno, Benveniste Jerome. l There are high frequencies in the SSH signal related to swell, which
“CoastalandInland Water SAR Altimetry at 80 Hz', 0STST can only be detected with 80 (or at least 40) Hz sampling rate, but are
2015

otherwise aliased with the 20 Hz product.
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Questions for this talk

Can we calculate the optimal posting rate for UF-SAR?

1. Canwe calculate the speckle autocorrelation of the waveform power?

2. What are expected improvements of e.g. SSH estimates (precision /sampling)?




Multilooked point target response

The PTR of the UF-SAR power from a single Doppler beam
index linrange gate kis approximated by (Ray et al., 2015):

W2(k.[) ~ Csinc2 Li _ 4 sinc? [k — k/] .

Inthe focused radargram the point target appears tilted
with increasing looking angle of the Doppler beam:
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Multilooked point target response
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Multilooked point target response
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Multilooked point target response | o
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Speckle noise autocorrelation function ~ PTR

measured ACF over ocean
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Speckle noise autocorrelation function ~ PTR
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Multilooked point target response
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Multilooked point target response
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Multilooked point target response

PTR, 1 burst . sinc2 (x/L,)
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A-C:The summing of multiple Doppler beams
spreads the power over multiple range bins.

D: Hence, the PTR appears narrower than the
sinc? function when looking only in the along-
track direction (power along the red lines
from panels A-C plotted in D).

However, once we sum the patterns in panels
A-Covertherange, we retrieve the well-
known sinc?term again.
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Noise autocorrelation functions of waveform power and SSH
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Noise autocorrelation functions of waveform power and SSH
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Noise autocorrelation functions of waveform power and SSH
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Noise autocorrelation functions of waveform power and SSH
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Noise autocorrelation functions of waveform power and SSH
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Noise autocorrelation functions of waveform power and SSH

Autocorrelation function
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i) The SSH noise correlation length and therefore
the required posting rate of UF-SAR is retracker
dependent!

21



Noise autocorrelation functions of waveform power and SSH

i) The SSH noise correlation length and therefore
the required posting rate of UF-SAR is retracker
dependent!
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Noise autocorrelation functions of waveform power and SSH
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i) The SSH noise correlation length and therefore
the required posting rate of UF-SAR is retracker
dependent!

ii) The threshold retracker considers power values
from at most 3 range gates, hence itsrange
estimates decorrelate similarto the powerina
single range gate.

ACF(SSH) ~ ACF(p,)

iii) The noise of the SAMOSA2 retracker estimates
can be written as a weighted sum over all power
values (in a linearisation) and therefore
decorrelates much slower than the signalina
single range gate p,.

ACF(SSH) ~ ACF(2Zw_.p,) ~ ACF(2p,)
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Where do the improvements come from then?

i) Precision:

In reality noise and signal cannot be well seperated:
Here we use synthetic gaussian noise at 80 Hz sampling with sinc? autocorrelation corresponding to a 20 Hz resolution.
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Where do the improvements come from then?

i) Precision:

In reality noise and signal cannot be well seperated:
Here we use synthetic gaussian noise at 80 Hz sampling with sincZ autocorrelation corresponding to a 20 Hz resolution.
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Where do the improvements come from then?

Precision:

In reality noise and signal cannot be well seperated:
Here we use synthetic gaussian noise at 80 Hz sampling with sincZ autocorrelation corresponding to a 20 Hz resolution.
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Where do the improvements come from then?

Precision:

In reality noise and signal cannot be well seperated:
Here we use synthetic gaussian noise at 80 Hz sampling with sincZ autocorrelation corresponding to a 20 Hz resolution.
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Where do the improvements come from then?

Precision:

In reality noise and signal cannot be well seperated:
Here we use synthetic gaussian noise at 80 Hz sampling with sincZ autocorrelation corresponding to a 20 Hz resolution.
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subsampling to 20 Hz averaging 80 Hz to 20 Hz “filtered” 20 Hz
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noise standard deviation 1 0.81 0.81
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consecutive 20 Hz samples

In this example, the precisionimprovement is a mere artifact of the increased point-to-point correlation!
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In a real data comparison of Sentinel-3 UF-SAR vs. FF-SAR we see the same tendency.

Precision:

Where do the improvements come from then?
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Where do the improvements come from then?

Precision:

In a real data comparison of Sentinel-3 UF-SAR vs. FF-SAR we see the same tendency.
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Noise spectrum at differen posting rates

Forming the noise spectral densities yields white noise spectrum at different sampling rates

noise for 20 Hz and colored noise for 40 and 80 Hz,
-10 + e

but the noise standard deviation is identical for alll M R
-15 i
These noise tails are in agreement with earlier N _

studies.

25 b

-30

A0 Hz
20 Hz

Due to squaring (power detection) the highest
frequencyis 20 Hz, hence at least 40 Hz sampling is

requiredin order not to alias power. A5 ¢
-50

=351

power spectral density (dB}

40 b

10t
This is similar to the required zero-padding of the

waveforms in range direction, see

Smith, Walter H. F., and Remko Scharroo. “Waveform Aliasing in Satellite
Radar Altimetry.” I[EEE Transactions on Geoscience and Remote Sensing
53, no. 4 (April 2015):1671-82. https://doi.org/10.1109/TGRS.2014.2331193.
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Take-home messages

» The radargram contains power peaks that are much narrowerin along-track direction than 300 m (namely
~100m), hence oversampling for inland waters is suggested.

» The along-track noise autocorrelation over ocean is different for different variables and retrackers.
- Higher sampling not necessarily reasonable.
- The effective number of looks (ENL) along a single range gate is not necessarily representative for
performance!

> Thereferenced studies did not report / quantify the correlation between consecutive 20 Hz samples. This may
have led to overly optimistic performance estimates of 40 and 80 Hz products!

> Atleast 40 Hz posting rate is needed to compute unaliased spectrain case of a perfect sinc? decorrelation
behaviour.
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Backup slides
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Posting rate estimates based on FWHM?

Considering the Full Width at Half Maximum (FWHM) of the sinc?
against the actual decorrelation, we can make a rough estimate the
required posting rates over ocean in dependence of the used
number of Doppler beams.
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Posting rate estimates based on FWHM?

Considering the Full Width at Half Maximum (FWHM) of the sinc?
against the actual decorrelation, we can make a rough estimate the
required posting rates over ocean in dependence of the used

number of Doppler beams.
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However, that is only true when looking from a single
range bin andignoring the 2D structure!
But what about estimates like SSH?
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Noise autocorrelation functions of waveform power and SSH 'i';u Delft

Methodology

Process UF-SAR waveforms with 240 Hz posting rate 54°N F

« Retrack UF-SARrange on ~240 Hz with SAMOSA2 and
threshold retracker (0.75)

53°N |

Latitude

 Detrendthe uncorrected SSH = altitude - retracked
range with1Hz moving median and remove outliers via —
MAD. The residual should be dominated by noise.

e C(Calculate noise ACFs

2%E 4°E 6°E
Longitude
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Waveforms
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Closed-burst and open-burst operations

i’“ N SAR Closed-burst, PRF ~18 kHz, burst.
1

3 4 5 6 7 8 9 10 1
SAR Interleaved (Open-burst), PRF ~9 kHz, continuous

5

Cry0_sat'2 AR '
Sentinel-3 i
1 2

No reception 2/3 of the time!

2

S

I

Sentinel-6 MF

7 8 9 10 11 12
milliseconds

Donlon et al. (2021),
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Synthetic aperture and along-track resolution

Here, a toy model of
how measurement
gaps cause frequency
duplicates (grating
lobes)
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Sentinel-3 Sentinel-6 Michael Freilich
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Synthetic aperture and along-track resolution - Theory
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Synthetic aperture and along-track resolution - Theory

synthetic aperture
(observation time T~25s)

satellite
track

N

fully focused SAR processing

~0.5 m
along-track
resolution

surface

We can do the focusing over the whole
aperture T. As in the FFT, the frequency
resolution is then proportional to 1/T, about
~0.5 m along track distance for S3.
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aperture T. As in the FFT, the frequency
unfocused SAR / delay-Doppler processing resolution is then proportional to 1/T, about

~0.5 m along track distance for S3.

~0.5m However, we can also subdivide the pulses
along-track into N chunks beforehand and on each perform
resolution

the FFT, which is then averaged. The
frequency resolution is then proportional to
1/(NT), about ~300 m along track distance for
single S3 bursts with duration ~3.5 ms.

~300 m
along-track
resolution

—_— - ——= surface
Egido et al. (2017), 10.1109/TCGRS.2016.2607122
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