Performances and benefits of a 1D-VAR approach applied to TCWV retrieval and WTC for the Sentinel 3A/B topography missions Bruno Picard¹, Ralf Bennartz², Frank Fell³ ¹Fluctus SAS, ²Vanderbilt University, ³Informus GmbH

bpicard@satobsfluctus.eu

Continued, enhanced ocean altimetry and climate monitoring from space

IDS workshop OSTST meeting

31.October > 4 November 202

tps://ostst-altimetry-2022.com

EUMETSAT

AMTROC (Altimeter 1D-VAR Tropospheric Correction) spoilers ...

- First demonstration ...
 - ... of the potential of a 1D-VAR retrieval in an operational environment dedicated to altimetry
 - ... of an approach where each retrieval comes with an uncertainty and a self-consistent validity flag
 - ... that the 1D-VAR WTC retrieval shows performances at the level of the operational product at global scale
- Looking into the details, the situation is contrasted in that ...
 - ... 1D-VAR performs better than the S3 operational (ANN-based)
 approach at high latitudes and over the tropical warm pool
 - ... the operational approach shows better performance over mid-latitudes

Study background

- AMTROC / EUMETSAT (03/2019 12/2019)
 - Implement 1D-VAR retrieval of TCWV and WTC <u>above the ice-free open</u> ocean from MWR observations onboard the S3 series
 - $\circ~$ Reduce biases in TCWV and WTC ~
 - Establish per-observation uncertainty
 - Provide per-observation quality flag
 - Apply to one year of S3-A data

AMTROC CCN / EUMETSAT (03/2021 – 03/2022)

- Update and improve 1D-VAR retrieval scheme
 - Process S3-A and S3-B full data records (from launch to 04/2021)
 - Evaluate against other operational/experimental products

AMTROC 1D-VAR retrieval scheme

Input from S3: MWR TBs, σ^{0} Input from NWP: TCWV, PSFC, SST, TM Input from NWP (static): Background T, q profiles and background error covariance from NWP, both function of TCWV **Output:** TCWV + uncertainty WTC + uncertainty LWP + uncertainty

Applying 1D-VAR / Optimal Estimation to TCWV / WTC retrieval

- TCWV, WTC, and LWP are strongly constrained by MWR observations, making the retrieval relatively independent from the background state
- Because the above is true in nature, one can obtain accurate retrievals using any method (1D-VAR, ANN, other)
- However, 1D-VAR additionally allows:
 - to conceptually and practically distinguish between the different forms of input
 - to calculate a posteriori errors considering contributions from the background
 - to individually quantify the amount of information the observations have contributed (versus the background)
- Good, well collocated external information used for the retrieval is crucial for performance.
- Applied tools: NWP SAF 1D-VAR v2.0 with RTTOV v12

Bias correction

- Optimal estimation / 1D-VAR procedures require the observations to be on average unbiased compared to the forward model
- Use ocean observations over range of actual TBs to derive O-B biases:
 - Collocate individual observations with NWP T/q profiles
 - Calculate cloud-free simulated TB
 - Evaluate histograms of all-sky,
 observed minus cloud-free simulated TBs
- Practical implementation:
 - Derive O-B biases for different TB ranges in 5 K intervals
 - Fit derived bias against TB
 - Correction: \triangle TB = $a_0 + a_1 \times$ TB

$$\Delta T_{B} = a_{0} + a_{1} \cdot T_{B}$$

Satellite	Frequency	a0	al
S3A	23 GHz	15.2358	-0.062787
S3A	36 GHz	20.0633	-0.092646
S3B	23 GHz	15.9284	-0.062587
S3B	36 GHz	19.1671	-0.086366

Bias correction

- Bias very smooth over time
- 36 GHz S3A/B very well intercalibrated
- 23 GHz S3A/B differ by ~0.3 K
- Overall bias -4 K (satellite warmer than reanalysis)
- Slight apparent 'drift' observed, especially in S3B 23 GHz

CLS ANN, ECMWF

GPD+

Validation: Scope

- In-depth comparison of the performances of the 1D-VAR products with
 - the operational S3 topo. products:
 - alternative solutions for S3 topo. :
 - solutions from other instrument on-board S3:
 AIRWAVE from SLSTR

	TCWV+UNC		WTC+UNC		LWP+UNC		ATT_Ku+UNC	
	S3A	S3B	S3A	S3B	S3A	S3B	S3A	S3B
1D-VAR	X+X	X+X	X+X	X+X	X+X	X+X	Х	Х
OPERATIONAL (ANN)	Х	Х	Х	Х	Х	Х	Х	Х
ERA5	Х	Х						
GPD+			Х	Х				
AIRWAVE	X+X	(X <mark>+X</mark>)						

Validation: Scope

- S3 operational: CLS Neural Network solution:
 - Frery, M.-L., et al. (2020). Sentinel-3 Microwave Radiometers: Instrument Description, Calibration and Geophysical Products Performances. Remote Sensing, 12(16), 2590. <u>https://doi.org/10.3390/rs12162590</u>
 - Global semi-physical empirical approach
 - NN learning based on TB simulated from ECMWF analysis

• GPD+ for S3 (Eumetsat):

- https://www.eumetsat.int/S3-altimetry-GPD-WTC
- GNSS (Global Navigation Satellite Systems) derived Path Delay Plus (GPD+) algorithm
- space-time objective analysis, of all available valid WTC measurements (from the onboard MWR, scanning imaging MWR (SI-MWR) and GNSS) in the vicinity of the estimation point.

Validation: Scope

- AIRWAVE for SLSTR (Eumetsat):
 - https://www.eumetsat.int/AIRWAVE-SLSTR
 - Advance Infra-Red WAter Vapour Estimator
 - The algorithm exploits the TIR channels (11 and 12 µm) of ATSR-like instruments and the dual viewing geometries to infer the TCWV in clear sky over water surfaces
 - Specific and demanding pre-processing of AIRWAVE retrievals
 - Identify all AIR 3-min granules with a temporal overlap with the investigated 1DV orbit
 - Median of all cloud-free observations within 10 km radius around center of MWR footprint

Validation: Approach

- Validation on individual retrievals
 - Consider full days (~14 full orbits, comprising ~45.000 1D-VAR retrievals)
 - Visual and statistical analysis
 - Investigate specific scenarios: low cloud cover, S3A vs. S3B, ...
- Global analysis
 - Gridding of retrievals (monthly, 4°×4°)
 - Visual analysis of retrieval differences
 - Crossover analysis for WTC
- The "truth" is not known
 - Very limited availability of independent measurements (radiosondes, GNSS) offshore
 - Resort to plausibility considerations
 - Crossover analysis for WTC

Validation: TCWV Individual Retrievals: **1DVAR close to NN** Distribution of TCWV from **1DVAR**, CLS NN, AIRWAVE & ERA5

Validation: TCWV Individual Retrievals: **1DVAR close to NN** Distribution of TCWV from **1DVAR**, CLS NN, AIRWAVE & ERA5

OE1_V15_NOV2021_VAL_2020-11-16T00:00:00_2020-11-17T00:00:00

Validation: Geographical distribution CLS_NN – 1D-VAR

- 1D-VAR wetter than WTC_Opera over the tropics, especially over the indo-pacific warm pool
- 1D-VAR drier than WTC_Opera at mid-latitudes
- 1D-VAR wetter than WTC_Opera at (southern) high latitudes

(confirmed by independent GPD+ Fernandez et al. validation, also true for GPD+ solution and ERA5)

Validation: variance of SSH (sea surface height) differences at crossovers

- Absolute performance metric specific to altimetry
- Definition: SSH = Altitude (altimeter range (sum of corrections))
- Main assumption: the ocean is stable over a period of 10 days
- Translated as: a new correction has better performance if it reduces the variance of SSH at cross-overs

VAR_ Δ SSH: variance of the differences between SSH ascending pass – SSH descending pass at Xovers The best WTC used to compute SSH minimizes VAR_ Δ SSH for Xovers <= 10 days

- SSH reference computed with correction_reference
- SSH target computed with correction_target

 $\Delta VAR \Delta SSH = VAR \Delta SSH target - VAR \Delta SSH ref$

 $\Delta VAR_{\Delta}SSH < 0 \rightarrow target > reference$

 $\Delta VAR \Delta SSH > 0 \rightarrow reference > target$

Comparison of WTC 1DVAR against WTC CLS NN opera 5-p « PLRM SST GAM » (best solution)

- Comparison of WTC 1DVAR against WTC CLS NN opera 5-p « PLRM SST GAM » (best solution)
- Global statistics hide contrasted distribution

- Comparison of WTC 1DVAR against WTC CLS NN opera 5-p « PLRM SST GAM » (best solution)
- **1DVAR performs better** at high latitudes where 1DVAR is wetter than Opera over the indo-pacific warm pool

- Comparison of WTC 1DVAR against WTC CLS NN opera 5-p « PLRM SST GAM » (best solution)
- CLS NN opera. performs better at high latitudes where OPERA is wetter than 1DVAR

Validation: Conclusions

- TCWV
 - 1D-VAR retrieval success: ca. 95-96 %
 - Excellent agreement between S3A and S3B
 - Good agreement between 1D-VAR, OPR, ERA-5. AIRWAVE drier, esp. near 15-25 kg/m³
- WTC
 - 1D-VAR and operational WTC retrievals show similar performances
 - 1D-VAR overall slightly better than 5p PLRM slightly better than 3p SAR
 - Opera WTC better at mid-latitudes
 - o 1D-VAR better at high latitudes and over the warm pool
 - Reason for the observed differences not yet completely understood
- 1D-VAR is a mature algorithm, at the level of operational products
- + uncertainty + bias monitoring + room for improvements :-D

Looking ...

- ... aside
 - ESA LTDP FDR4ALT (PI CLS): Apply 1D-VAR MWR retrieval to ERS-1/2 and Envisat
 - Join the dots (AMTROC+FDR4ALT): Generate a methodologically consistent time series ...
 - o ... for TCWV, WTC, and LWP (plus uncertainties)
 - \circ ... covering the 30+ years time period starting in 07/91 (gap: 04/12 03/16)
- ... beyond
 - Investigate the synergetic use of concomitant MWR and SLSTR observations
 - → Identify retrieval adverse meteorological situations?
 - \circ \rightarrow Improve TCWV / WTC accuracy closer to the coast?
 - Apply 1D-VAR to Sentinel-6 observations (AMR-C + HRMR)
 - → Improved retrieval accuracy?
 - Apply 1D-VAR to Jason-3 AMR
 - \circ \rightarrow Fill the gap in the ERS-1/2, ENV, S3-A/B time series?

21

Meteosat-8, 15 January 2006, 15:30 UTC Channel 05 (WV6.2) Source: <u>EUMETSAT</u> Continued, enhanced ocean altimetry and climate monitoring from space

31 October > 4 November 2022

Thank you for your attention