First steps toward an improvement of open ocean WTC using HRMR high-frequency channels

Bruno Picard, Fluctus, Rabastens, France

MWR for WTC retrieval

- historical AMR-C low-frequency channels 18.7/23.8/34 GHz ~25 km

- brand new HRMR high-frequency channels 90/130/166 GHz ~3-5 km

Higher frequencies =

- better spatial resolution

3

- less sensitive to the surface

- more sensitive to precipitation

HF are a direct (from observations) solution to two areas of research for the improvement of the WTC

- coastal areas (see S. Brown slides)

- cloudy / precipitation conditions

The variations of the WTC are highly correlated to the variations of the TB ...

... which are (also) correlated to the precipitations

Is it possible to take advantage of the HF channels (resolution + physic) in order to improve the WTC under such conditions ?

Dataset:

- AMR Level 2 NTC F07 (from Eumetsat <u>https://archive.eumetsat.int/usc/L</u> <u>serServicesClient.html</u>) (also special delivery from R. Scharroo)

- Hydro-SAF H60 NRT product https://hsaf.meteoam.it/ roduct images (click on image for animation, frame selection and zoom)

EUMETSAT H SAF P-IN-SEVIRI-PMW (H60) Instantaneous rain rate retrieved from IR-MW blending data

Geostationay Seviri Ik + MW blending

few km of spatial resolution

1 RR product every 15min

"closest" time wrt HRMR

2022-09-15

cycle 68 Passes 59 to 75

07:30 to 23:30

TB @166 GHz [K]

RR [0,10] mm/hr

Pass 61

Pass 63

Pass 73

The scattering effect leads to lower TB

Illustration of the spatial resolution

Unseen precipitation or small island?

Water vapour or rain cell ?

Small details

Potential tuning on rad rain flag

Is there independent information that could be used to provide a better WTC ?

Toward an empirical approach that would include HRMR HF:

- simulationcalibration
- learning

<u>Simulations</u>

RTTOV provides simulations (bottom) very close to observations (top) including the depression on the TB due to the scattering effect

(CNES study)

DTB [K]

<u>Calibration</u>

Comparison of

simulated TB based on ERA5 simulations

with

observations

nothing to report

<u>Calibration</u>

Comparison of

simulated TB based on ERA5 simulations

with

observations

nothing to report

Learning

work in progress

Conclusion

- very first illustration of collocated HF TB in the context of an altimetry mission !

Conclusion

- Using collocated precipitation allows to better understand

impact on WTCbehaviour of LF wrt HF

- critical for the design of future L2 retrieval

Conclusion

- still a lot of work to do

35

but the combination of AMR-C and HRMR measurements is a unique opportunity to demonstrate the benefit of HF observations for future missions