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Sentinel-6 AMR-C (climate)

• AMR-C is next generation altimeter 
radiometer incorporating recommendations 
from OSTST

• AMR-C includes two innovations from prior 
generation AMR on Jason-series

• Supplemental Calibration System (SCS) –
maintain mm/yr stability

• High Resolution Microwave Radiometer 
(HRMR) – provide coastal path delay to 1cm 
at 10km from land

Jason-3 AMR

Sentinel-6 AMR-C

HRMR

SCS
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Sea Level Change

• Radiometer wet path delay correction historically considered 
largest source of uncertainty in long term GMSL trend 
estimate

– Requires careful monitoring and application of periodic post-launch 
corrections using references sensitive to climate variability

– Corrections of up to 30x GMSL trend have been applied to radiometer 
wet PD record 
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Nerem et al., PNAS, 2018

When the first derivative is no 

longer enough…..

Sea level change may be accelerating….
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Sentinel-6 AMR-C Radiometer Drift Requirement

The OSTST has developed a specific requirement:

Measure globally averaged sea level relative to levels established 

during the cal/val phase with zero bias +/- 1 mm (standard error) 

averaged over any one year

Radiometer drifts & jumps directly affect globally averaged 

sea level observations, leading to uncertainty many times 

greater than the trend being measured
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Supplemental Calibration System

AMR-C includes two redundant calibration sources:

• Internal noise diodes and a switch to a termination

• External cold sky mirror and free-space blackbody target
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Special In-Orbit Calibration Activities

• 24 hour dwell on warm calibration target
• Verify model for warm target brightness temperature over orbital thermal cycles 

(using internal calibration sources)
• Verify Earth spill-over contributions when viewing warm target

• View sky through main reflector and secondary reflector within minutes 
• Verify Earth contribution in cold sky reflector

• View sky through main reflector during land/ocean transition 
• Verify integrated antenna pattern

• Perform SCS calibration over ocean and land within minutes
• Verify Earth contributions are properly accounted for
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Channel Earth Spillover 
Fraction

18.7 GHz 0.0012

23.8 GHz 0.0008

34.0 GHz 0.0004

• Warm load brightness determined from thermistors on 
target baseplate

• Earth fractions determined via land/ocean contrast

• Uncertainty of warm target at 10mK level

Residual difference from model at 
10mK level

In-flight Warm Target Characterization

Microwave Cal 
Target: 1.1 mm 

EccosorbCF117

on Aluminum 

IR blocking EPS (“Styrofoam”) Radome

UV / IR blocking shield

8.6mm

3
4

.4
m

m

Earth contribution (spillover) consistent with pre-launch values
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• Viewing cold sky mirror during land/ocean transition provides ~150K 
background contrast to validate Earth spill-over fraction

• Comparing cold sky view between main reflector and secondary reflector 
is direct validation of calibration model

Channel Earth Spillover 
Fraction

18.7 GHz 0.002

23.8 GHz 0.0018

34.0 GHz 0.0000

In-flight Cold Sky Mirror Characterization

Cold sky view is equivalent between main 
and secondary reflectors 
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Stability Validation: Vicarious Ocean Reference

• On-Earth references have historically been used to stabilize altimeter radiometer calibration, but 
are now independent sources for Sentinel-6

• With Sentinel-6, their limitations become apparent

18.7 GHz 34.0 GHz
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Stability Validation: Vicarious Ocean Reference

• Same spurious trend 
observed in 34 GHz vicarious 
ocean reference between 
Jason-3 and Sentinel-6
• In the past, we would have 

introduced this artifact into the 
GMSL climate record 
introducing ~1mm/yr drift

Jason-3
Sentinel-6
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Stability Validation: Amazon Region

• Amazon rainforest provides blackbody like 
warm target 

• No detectable drift observed at warm end of TB 
dynamic range

18.7 GHz 23.8 GHz 34.0 GHz
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Stability Validation: Inter-satellite Calibration

• Inter-satellite calibration most reliable means to verify radiometer stability 
(Brown et al., 2012)

• Compared co-located observations between AMR and SSMI F16 and F18

• SSMI TBs converted to equivalent AMR TBs

• No detectable trends observed in AMR-C TBs with uncertainty < 0.1K/yr

18.7 GHz 23.8 GHz 34.0 GHz

Channel Relative Trend to 
SSMI TB

18.7 GHz 0.01 + 0.08 K

23.8 GHz -0.01 + 0.1 K

34.0 GHz 0.03 + 0.04 K
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Sentinel-6:  The New Climate Reference

• Wet PD long term stability estimated to be 
better than 0.3mm for any one year period
and eliminates reliance on ancillary data 
sources for calibration

• For time scales longer than 3 years, 
stability is << 0.1 mm/yr
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1Hz PD: Sentinel-6 compared to Jason-3 and ECMWF Model

• Difference between J3 and S6 at mm-level

• S6 AMR-C PD stable to within our ability to validate

1Hz standard deviation between J3 and S6 
stable at 2mm level over tandem period (sensor 
noise level)

ECMWF model 
change

Jason-3 – Sentinel 6
ECMWF – Sentinel 6

Mean

1Hz Standard Deviation

Mean Jason-3 – Sentinel-6 PD
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Jason-3 and Sentinel-6 Compared to ECMWF

• Sentinel-6 more stable than 
Jason-3 due to SCS system

• Jason-3 calibrates ~30-60 days 
via cold sky pitch observations

• Single calibration source only 
partially stabilizes Jason-3

• Jason-3 long term calibration to 
be re-visited to exonerate or 
confirm suggested drift

ECMWF model 
change

ECMWF - Jason-3
ECMWF – Sentinel 6
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HRMR Performance

• HRMR is experimental payload, performing nominally to 
date

• Observes at 90, 130 and 166 GHz with <5km spatial 
resolution

• Data used to extend wet path delay measurement to within 
10km from land with 1cm goal

90 GHz

130 GHz 166 GHz
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HRMR Performance

HRMR free from land contamination up to 5km from coast



19

HRMR Path Delay

Last valid open 
ocean AMR-C path 
delay is > 100km 
from the coast due 
to San Miguel Island

HRMR+AMR PD

AMR-C Ocean 
Algorithm PD

𝐻𝑅𝑀𝑅𝑃𝐷 = 𝑐0 𝑃𝐷 +

𝑓,𝑝

𝑐𝑓,𝑝(𝑃𝐷) 𝑇𝑚𝑏(𝑓)
𝑝

𝑃𝐷𝐻𝑅𝑀𝑅_𝑏𝑙𝑒𝑛𝑑 = 𝑃𝐷𝐴𝑀𝑅 1 − 𝐺 + 𝑃𝐷𝐻𝑅𝑀𝑅𝐺

𝐺 =
𝜎𝐴𝑀𝑅
2 (𝑙𝑎𝑛𝑑_𝑓𝑟𝑎𝑐)

𝜎𝐴𝑀𝑅
2 𝑙𝑎𝑛𝑑_𝑓𝑟𝑎𝑐 + 𝜎𝐻𝑅𝑀𝑅

2 (𝑃𝐷)

HRMR PD algorithm linearized about first guess PD 
from AMR-C

Then blended with low-frequency coastal algorithm 
based on relative errors (Kalman algorithm)
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HRMR Coastal Path Delay Performance

• Computed excess error from model 
relative to open ocean as a function of 
land fraction (distance to coast)

• Same validation approach used for 
AMR coastal algorithm currently in use

• HRMR+AMR has up to 50% reduction in 
variance from AMR only coastal PD to 
coast

• HRMR+AMR excess error globally less 
than 1 cm to 5km from land

• HRMR algorithm work on-going

40km 18km 5km

AMR
HRMR
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HRMR Coastal Path Delay for different PD ranges

• HRMR improves 
performance over all PD 
ranges

• HRMR performance 
improvement 
significantly better for PD 
< 10cm where HRMR has 
best signal to noise

• For PDs < 5cm, almost no 
degradation from open 
ocean performance

Best performance in 
dry conditions

AMR
HRMR
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Summary

• AMR-C and HRMR meeting requirements/goals, 
performing nominally

• AMR-C sets new standard for wet path delay stability, 
all but eliminating radiometer contribution to GMSL 
trend error without latency
• 0.3 mm/yr for 1 year span

• << 0.1 mm/yr for >3 year span

• HRMR demonstrating 1cm error to 5km from land
• HRMR TBs and PDs appearing in next product release

• Algorithm evolutions anticipated (OSTST contributions 
encouraged)

• Exploit HRMR for other applications (e.g. 
snow/ice/precipitation)


