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What is the uncertainty budget in deriving Global Mean Sea

Our simulation aims at identifying and characterizing error

Level (GMSL) from satellite altimetry? This is one of the A correlation structures between intermediary parameters
questions to be addressed within the framework of the Py (t) = Aexp(—v1) - [1 4 erflur)] - o exp( — v2)[1 + erf(uz)| ‘I‘m ] which i) are affected by the uncertainties of the instrumental
ESA-funded project Assessment Sea Level rise Stability component of an altimetry system, and eventually ii) affect
Uncertainty, ASeLSU. ASelLSU approaches this question in For [v1, va, u1, ] see doi.org/10.1080/01490410490465210 the uncertainty of the Global Mean Sea Level product. We
a metrological manner which entails a full breakdown of all assmp?: far zone approximation 1
sources of uncertainties arising from the altimeter and assmp2: two-way antenna pattern is gaussian and isotropic . 1. simulate LRM waveforms of Sentinel-6 Michael FreiIiCh,
assessment of error correlation structures to quantify the U R ) 2. vary thermal and speckle noise levels to generate a set of
uncertainty budget. PR G (B BEEREIEITNT = inputs for Monte Carlo analysis,

assmp4: radar point target response is gaussian J 3. retrack the waveforms using MLE4,
From acquiring the radar backscatter to forming a waveform 4. derive 09, U, S S Bku, SS_BC, and IC, and
and estimating the GMSL, several processing steps are Lt ronresontation (Pur) ] 5. investigate relevant correlation structures
involved, which makes the uncertainty analysis intricate. ° B Our simulation shows moderate to strong correlations
This is especially true considering that components such as _
the altimetric range and sea state bias correction are not ADC w(W Fku) 3 between the pairs (SSBku, IC), (SSBc, Rku), and

pulse compression

(SSBxku, Rku ), and significant correlations for ( Rk, I1C)
and (SSB¢, SSBky ). See figures.

derived independently. Four primary parameters — epoch,
sigma-0, significant wave height, and mis-pointing angle —
are derived from the most common retracking used MLE4
(Amarouche et al., 2004). Two of these parameters, sigma-0
and significant wave-height, are used to estimate the wind
speed, which inturn is used with significant wave-height
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(again) to determine the sea state bias correction. nen

In the current study, we perform simulations to understand u(4) fiting process — gmooo
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-f12{u — fé ¢ = = ¢ C and Ku bands may be sources of additional correlations. BU
In fact colinear differences of sea surface height (corrected _
‘ for geophysical effects) are inputs to the process in which The current S;mUIator does no! retréCk
these LUTs are derived. To break down the LUT function ’U,(U) [ — f ([0_ J [SWHD _|_@ o bend W.ave (;;ms. \;ngay o S?Ight
u(IC) into its input components adds too much complexity to the — JLUT \[@0); changes in p( Ku,. )a}fter adding
) analysis. For now, we consider the LUT as an auxiliary . the © band processing chain.
oIC input, with its associated uncertainty. In its current state, LUT representation —— 30.00  30.02  30.04 ;%06 30.08  30.10  30.12
8SSBKu ) the sim.ulation analysis does not consider any level of - 85‘;51{“ interpolation ]
9SLA uncertainty for the LUT. From a metrological point of view, the uncertainty budget for
8IC 0SS Bk ] G M SL cannot be defined unless all error correlations are
i OSW H considered. The uncertainty tree diagram in this poster
shows instances where correlations might exist. According
0SLA to our simulation, correlations at many of those instances
n u(SSB $SBku = U\|[SWH) + 0 sl ’ y
05S Bk ( Ku) <o =|feon(UJ | Gbssa,-y] < are significant.
R e A—————————————— T g e In the next steps we willi) integrate more of the actual
T ) DTC d?;?rr:;%:pragﬁg Ci?fegﬁgfc on complexity in deriving GM SL into our simulation scheme,
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