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Abstract

Since 10 years the available network of in-situ stations in
the German Bight and in Eastern Baltic is used for the val-

Evaluation of WSE from altimetry Slope from altimetry and river discharge

Data selection and screening are from the " VirtualPass method”
(Fenoglio et al. 2021, Hydrocoastal PVR). SAR altimetry mea-

A slope accuracy of 1.7 cm/km is a SWOT mission re-
quirement. Today, river slope is computed from space from

idation of altimeter mission. Validation of SAR altimeters sures water elevation in rivers, accuracy depends on the retracker. multiple crossing of a same nadir-altimetry track. Depth
was done in the Rhine river. CALVAL activities have used The highest accuracy is obtained from the SAMOSA+ (SAMP) || and width are from a DTM, here from Sobek model. Dis-
dedicated in-situ, models, algorithms and external satellite || retrackers. Copernicus standard products are noisier. The "Cen- || charge is estimated from slope, depth and width (Figs.13-
data. Today plans are presented. terline method” used for non-repeat mission is less accurate. 15) by adjusting coefficients and conductance in Bjerklie,
oo fom st i o Ty 5SS AN, OC QAT 2013 (Fig.16).
Methods and Data " : el A ;.
Space observations, in-situ and model data build a dense . .’ f e S |
two-dimensional field of water height change. The study T . — | o - K/E'inz 13 Slope between Worms and [ £ig 14 Depth from DTM and WSE
focuses on use of space-based height and slope to derive = = — g e eoo L mee [ |
river discharge. Interval is from June 2016 to December 009 g W ar ey ; AVA i
2021, the altimeter missions are : Fig. 5 Stdd of S3 SLA against in-situ Fig. 6 Samples in compared time-series E ggg MA—J\W mg: . | . | | :
e S3 Copernicus inland water Ocog, SAMOSA Fig.20115 ermoi:]e wijlcsh S Fig.201166 R:;ne ci(;:chazroge inzozli/lainzozm -
e CS2 ESA inland water Ocog, Ocean Review for rivers (mean = 9.21m. med =918 m) | | Reviewfor rivers {mean = 9.2¢ m, med = 2,18 m) At each location along the river, the slope variability is de-
e53 and C2 SAMOSAL from Earth Console AR G ] rived from 30 scenaria .(Flg.. 17). Wh.lle its mean is almost
£ . £, constant for all scenaria (Fig. 18), its range is larger for
o ICESAT-2 "f : E: . lower scenaria (Figs. 19, 21) and its variability depends on
Virtual points (VP) are estimated as intersection of the cen- aal 10T anl %0 . the location (Figs. 20, 22).
terline of the river extracted from the SWORD11 database e N
and of the altimeter master ground-tracks (kml file). The ST R © Rivor orltavion wr groum-crack (e
time-series of Water Surface Elevation (WSE) are built with Fig. 7 Accuracy versus river width Fig. 8 Accuray versus orientation vHmm}HMMMMMMWHHWMMH
two different methods. In the first method, observations of -
one single virtual point (one-VS) are collected. In the sec- L P i w2 = )
ond method time-series are constructed from observations £ 4] S3A GPOD SAR/SAM+ 80Hz : stdicor/np = 108mm/0.997/72 l Fig. 17 Five of 32 1D-Sobek scenaria Fig. 18 Statistics of height vrs scenaria
at multiple VS (multi-VS) after correcting for the river mean ] 3 | T —— S —
slope, the river profile is computed by ICESAT-2 data. E o ; kL | _ ; ARSI etNNNIRIRORINeS H | R
o g e S | il |
2016 2017 2018 2019 2020 2021 2022 IR LN
| Fig. 9 VirtualPass method for 53A SLA in Mainz Fig. 19 Statistics of slope vrs scenaria || Fig. 20 std of slope vrs reach
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K Reference model at mean regime The extreme water height of 15 July 2022 was observed by bo
oo « Tide Gauge zero : i ~ - S
i : gauges of the network and by the Sentinel-3 altimeters. Gauges |1 = ° R
£ 10 . : . . . . . in 21 days in Fig. . SWOT simulation by CNES Large
g - time-series (lines) and altimeter observations (stars) are seen in _ _ _ _
b . . . . Scale Simulator in Mainz (Figs. 24-25).
z figure 11. Sentinel-3 observations well match the corresponding = \
I gauges. In figure 12 the time evolution of river discharge measured — - ‘ -
i § ff 0§ F jfid § Fiif by the same gauges is shown together with the precipitation rates
H i f | ) Cf in various cathcments, the Ahr catchment is clearly cause of the
Fig. 4 River Rhine mean profile from hydrodynamic model Sobek (BfG) water extreme observed near Bonn on the same day
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Fig. 12 Extreme event of 15 July 2022: Discharge from in-situ data and precipitation

rate in Rhine (violet), Mosel (black) and Ahr (red) catchments Conclusions
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Fig. 25 WSE in Mainz from LSS simulator from Sobek model input and from
real S3A altimetry (blue circle) and river gauge (black triangle) at S3A revisit
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