

Feed-back and contribution after several years of HaiYang-2B data availability

OSTST2022, 02/11/2022

Alexandre Philip¹, Sabine Philipps¹, Yannice Faugère¹, Matthias Raynal², Jean-Michel Lachiver² and Nadège Quéruel²

- 1: CLS Toulouse, France
- 2: CNES Toulouse, France

Summary

1.Context2.HY2-B assessment and contribution3.Conclusion et perspectives

1 Context

HaiYang-2B is an NSOAS satellite, it was launched on 25/10/2018 and belongs to the long series of HY satellites.

Sensors:

- Radiometer,
- dual frequency c and ku bands,
- Scaterometer
- GPS (no DORIS)

Parameter of interest:

- Sea Level Anomaly
- Significant Wave Height
- Wind speed

<u>Orbit:</u>

The orbit is sun-synchronous with a 14-day cycle. Reach 80° latitudes

L2 Data:

- Data type:
 - IGDR : 2-3 days timeliness
 - SGDR: same as IGDR but includes waveforms
 - GDR: 1 month timeliness
- Availability:
 - IGDR: from 15-11-2019
 - SGDR: from 05-07-2020
 - GDR: from 20-12-2019

1 Context: NSOAS / CNES usage of data

Summary

1.Context2.HY2-B assessment and contribution3.Conclusion et perspectives

2 HY2B Assessment : Data used

Period : GDR data from 2019-12 to 2022-04

Field used for Sea Level Anomaly (SLA) are based on along track reprocessing of historical dataset (L2PDT21) standards available on <u>Aviso+</u>

Orbite	Range	lono	Dry tropo	Wet tropo	Ocean tide height
CNES	L2 product	GIM	ECMWF	ECMWF	FES14b
Pole tide	Solid tide	SSB	DAC	Internal tide	MSS
Desai MPL2017	Cartwright	L2 product	MOG2D	Zaron2019	Scripps combine CNES15 DTU13 sur WGS84

2 HY2B Assessment : Data coverage

60°N 30°N 0° 30°S 60°S 120°E 180° 120°W 60°W 60°E 0° 20 30 40 10 0 50

H2B missing percentage (ocean + ice)

- > Around 10% of missing data over ocean on standard behavior
- Lack of data availability over ice areas
- Frequently missing orbit over ocean
- Long missing period : from July 2020 to the end of 2020. (Launch of HY2C on september)

HaiYang-2B assessment and contribution – OSTST 2022

- Mostly rejected at :
 - o high latitude
 - o Indonesia area
- > Around 3% of rejected data in standard behavior.

- 7 -

2 HY2B Assessment: HY2B/J3 L2 SWH Crossovers

- Global bias around 1.9cm
- Amplitude difference around +-20cm
- Bias on strong wave areas,
- Cyclic statistics stable over time around 2mm bias

2 HY2B Assessment: Wind and Waves contribution L2P/L3

- ➤ A calibration is applied on HY2B SWH
- HY2B L2P W&W products are regionaly unbiased

- Noise level on SWH is around 80% lower for HY2B than J3 in 20Hz
- Filtering applied on calibrated SWH reduce the noise for wavelengths below 100km
- L3 HY2B and J3 W&W SWH spectra are similar

2 HY2B Assessment: Wind and Waves contribution

- HY2B only contributes to the final « D-5 » L4 map, as IGDR data are not available on time for the « D-1 » and « D-2 » map.
- Around 12 % of contribution
- Similar to mission such as CryoSAT-2, Sentinel-3A and -3B

2 HY2B Assessment: HY2B/HY2B SLA Crossovers

5.50

5.25

5.00

Mar

H2B: mean 6.3cm S3A: mean 6cm

S3B: mean 6cm

lul

May

Sep

Nov

Mar

2022

Mar

Cyclic statistics stable over time. HY2B statistics are in line with other missions

2 HY2B Assessment: J3/HY2B SLA Crossovers

- ➤ Good consistency bewteen J3 and HY2B, +-2cm amplitude
- Cyclic statistics stable over time
- Bias on strong wave areas (shown in previous slide)
- Ionospheric correction patch
 - J3 filtered ionospheric correction
 - HY2B GIM ionosperic correction

2 HY2B Assessment: wavelenghts

SLA = orbit - range - MSS

- 20Hz : Same performence bewteen HY2B and J3 but lower noise level on range for HY2B compaired to J3
- 1Hz HY2B spetrum is not superimposed with other spectra below 30km wavelengths
- Specific post-processing is applied to the 1Hz range available in the products

2: HY2B Assessment: DUACS L3/L4 contribution

- HY2B ingested in the DUACS system to produce the operationnal products dissaminated in the Copernicus Marine Service
- It complements the altimetry coverage to improve the sea level maps at mesoscale
- Slightly lower than the other due to the lack of NRT/(OGDR Level-2 product)
- Best measurements of the January 2022 Tonga Tsunami (presentation in the Application Session)

PERMIT AND A STATE AND A ST

2 HY2B Assessment: SSB 3D

- SSB 3D show good performance on SLA
- Reduction of 7.2% of the SLA variance
- Recommended to apply instead the NSOAS solution for the next L2PDT24 repocessing

2 HY2B Assessment: High Frequency Adjustment (HFA)

- Reduction of 15% on bump and noise level when using SSB 3D instead NSOAS solution
- Additional reduction of bump and noise level of 31% when HFA is applied
- Used for the future HY2B high frequency products

Summary

1.Context2.HY2-B assessment and contribution3.Conclusion et perspectives

3: conclusion perspectives

- > HY2B part of Sea Level and Wind & Waves product in Copernicus Marine Services
- ➤ Good performences of HY2B,
- Huge improvement of NSOAS data processing is observed since HY2A
- Sea Level products quality could be improved
 - Radiometer wet tropospheric correction have been improved and show good performances (not shown)
 - Filtering and assessment of dual frequency ionospheric correction will be performed.
 Reduction of the signal observed in the geomagnetic equator is expected
 - Sea State Bias 3D made for HY2B
 - High Frequency Adjustment available
- Large constellation of satellites : HY2B/C/D and followers
- Similar performance is observed of HY2C, assessment shown in poster session
- > HY2D have been launch 2021-05-19, assessment will be performed soon
- Usage of high frequency data

Thank you

