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Ongoing buoy development in Bass Strait
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Recently upgraded UTas/IMOS Mk-VI GNSS/INS buoy at Bass Strait altimetry validation facility
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The Bass Strait facility presently contributes cycle-by-cycle estimates of absolute bias to the Ocean Surface Topography Science
Team (OSTST) for the Jason-series missions and to the Sentinel-3 Validation Team (S3VT) for the Sentinel-3A and Sentinel-3B

missions.

As altimeters progressed from Low Resolution Mode (LRM) to Synthetic-Aperture Radar (SAR) and will enter a new era soon on
the upcoming swath-based interferometric mission Surface Water Ocean Topography (SWOT), validation have become more
and more stringent in its requirements, asking for more accurate and sustained SSH observations. To be prepared for such
challenge, the UTas/IMOS altimetry validation buoy has achieved an upgrade from Mk-1V (old) to Mk-VI (new) design.




Formation of a buoy array in Bass Strait
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Along-track waveforms from both Low-Resolution (LR) and High-Resolution (HR) output by Sentinel-6 Michael Freilich (S6MF) are
provided to show reasonable altimetry performance at the chosen deployed location.

Meanwhile, GNSS stations (see white text) are set up/upgraded along the coast on the islands of Tasmania for future research
possibilities, e.g., weather system monitoring, GNSS reflectometry study etc.




Old/New buoy transition — overarching precision against mooring

@ Similar pattern in the
temporal domain from the
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the mooring with some
performance improvement
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@ slightly reduced RMS
against the mooring for the
new buoys (B8 & B11) —
warrant for extended
deployment to validate
possible improvement.

Residual of SSH solutions from Mk-IV, Mk-VIs minus in situ mooring
solutions over the trial deployment (~193 hours)

From the old Mk-1V to the new Mk-VI buoy design, the main changes in the features are: instalment of solar panels to achieve

sustained deployment duration (previously 48 hours vs. present several months) in preparation for SWOT fast-sampling phase;
elevated antenna height (from ~0.6 m to ~1.0 m) with larger floats for avoidance of GNSS outage in high sea states; addition of
inertial unit to quantify impact of orientation variations on SSH solutions.




Old/New buoy transition — relative precision within the triplet group

@ The standard deviation of the
differential SSH (dSSH) taken as the noise
baseline. The magnitude (7-12 mm)
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~8.5 mm as per previous investigation(l]
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Differential SSH solutions (~193 hours) among the buoy group, providing

information of the systematic noise within the buoy system.
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Ref [1]: Zhou B, Watson C, Legresy B, King MA, Beardsley J, Deane A. GNSS/INS-equipped buoys for altimetry validation: Lessons
learnt and new directions from the Bass Strait validation facility. Remote Sensing. 2020 Sep 15;12(18):3001.
https://doi.org/10.3390/rs12183001




Tidal differences — intra-swath variability
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*Reference tide at Jason comparison point (CP) is derived based on the tidal analysis of decade-long SSH record from the in situ
mooring using Utide Matlab toolbox[?!,

Ref [2]: Codiga, D.L., 2011. Unified tidal analysis and prediction using the UTide Matlab functions.




Tidal differences — FES2014b tide model comparison
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Sea state within the swath — frontal system propagation
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Tropospheric delay with the swath — intra-swath variability
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*Tropospheric delay series for the buoys are extracted from GipsyX solutions provided by Dr. Christopher Watson.




Tropospheric delay with the swath — frontal system propagation

Tropospheric delay timeseries* along track and selected
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*All five timeseries in the figure are differenced against a common mean value of all tropospheric series from the buoys.




Sea level anomaly along track — tidal resonance in Bass Strait

@ SLA series* showed strong semi-diurnal signals
in all the buoys captured in the trial deployment.

surface wind is likely the cause — occurrence of
tidal resonance in Bass Strait has been investigated

@ DAC models (e.g., by CNES/CNRS-Legos/CLS)
are used in altimetry outputs. However, an obvious
phase shift is evident when compared with in situ
observations — low temporal resolution of the DAC
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*SLA series shown in the figure has been corrected by tidal analysis results using UTide but not corrected for the DAC.

Ref [3]: Wijeratne EM, Pattiaratchi CB, Eliot M, Haigh ID. Tidal characteristics in Bass Strait, south-east Australia.

Estuarine, Coastal and Shelf Science. 2012 Dec 1;114:156-65.




Spatial scale of the buoy array errors — inferred/observed geostrophic current

@ Similar level of energy to
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Understanding the spatial scale of the errors in the buoy array is crucial in future SWOT validation activities. Under the

assumption of geostrophic balance in the deployed area in Bass Strait, we compared observed currents* by the in situ current-

meter and the inferred currents by the buoy-pairs randomly formed from the array.

*Non-tidal currents are used/shown in the figure to investigate the spatial scale of the buoy errors in favour of its high signal-
noise ratio (SNR) feature —interested signals are errors in both sources rather than the current for this case, while tidal currents

are used to estimate an azimuth bias in the current-meter observations also in favour of its high SNR —

interested signals are the actual tidal current for this.




Spatial scale of the buoy array errors — geostrophic current at Jason CP

@ Key Points:
20-km spacing of the buoy

array may be more
suitable for future SWOT
validation activities in Bass
Strait.
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For a more direct comparison with the current-meter, we further investigated the buoy pairs centred at the Jason CP — only
one 40-km pair and one 20-km pair is available.

Three <1 km buoy pairs (B03-B08, B03-B11, B08-B11) are included in the investigation to get a sense of the current SNR with
respect to the systematic errors of the buoy platform.




Comparison of buoy and altimetry output — buoy vs Sentinel-6 Michael Freilich
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In all four panels, the triple buoy group provide some information about the uncertainty of the corresponding quantities derived
via buoy approach — the scatter of the triplet solutions at JAS comparison point indicates the accuracy of the buoy approach for
the estimation of the wet tropospheric delay, and observation of the SWH, SSH and SLA.

In general, based on the comparison between buoy and altimetry results, performance of both is reasonable. Some possible land
contamination issue was identified for the radiometer onboard S6MF near the coast (around JAS and JAS+10), while solutions
from buoys (JAS+10, JAS+20) further away from the land based reference station warrants enhancements in the double-
differencing processing method used in this analysis.
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Summary:
@ Old/New buoy transition:

» Performance of the UTas/IMOS Mk-VI Buoy remains unchanged temporarily with overarching precision of 15 mm
with a 8.5 mm systematic noise baseline — any potential improvement needs longer deployment to validate (in
progress).

@ Buoy functionality — intra-swath ocean/atmosphere variability:

» GNSS buoy array allows in situ observation of the spatial and temporal evolution of tide, SWH, troposphere —
all required to correctly interpret SWOT data..

@ Spatial scale of the buoy array errors: (f j

» 20-km spacing array is reasonable in Bass Strait for SWOT validation activities. _

@ Quality of buoy/altimetry mission output:
» Outputs from both are generally consistent with each other;

» Longer deployment is needed for further performance assessment.
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