

1992-2022 Global Mean Sea Level [mm]

The Greenland Ice Sheet was in near mass balance from 1972–1990. Since then it has added 13.7 mm to GMSL, <u>half during the last 8 years.</u>

Mouginot, J., and Coauthors, 2019: Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. PNAS, 116, 9239–9244

Using satellite altimetry to obtain subsurface ocean temperatures on the Greenland Shelf

Carine van der Boog and <u>Ian Fenty</u>

Ocean temperature at 250m from ECCO

Subsurface warm and salty Atlantic Water reaches Greenland's glaciers after crossing the continental shelf in deep submarine canyons.

NASA's 2016-2021 Oceans Melting Greenland (OMG) mission showed:

- warmer Atlantic Water \rightarrow more glacier melt
- colder Atlantic Water \rightarrow less glacier melt

Can we monitor Atlantic Water temperatures close to the Greenland Ice Sheet using satellite altimetry?

Hypothesis: Atlantic Water temperatures close to the Greenland Ice Sheet can be estimated from sea level anomalies

Willis et al. (2004):

- Large-scale upper ocean heat content variations can be inferred from sea level anomalies

Häkkinen et al. (2013):

 21% of the sea-level variance in the North Atlantic can be explained by upper ocean heat content new in this work:

- relatively small coastal region
- attempt to link sea-level anomalies to subsurface heat

Satellite altimetry near Greenland

- Continuous coverage for almost 30 years
- Better sampled south of 66N
 - Reference orbit
 - Seasonal sea-ice mainly north of 66N

	Торех	ERS-1	ERS-2	Jason-1	Jason-2	Jason-3	Envisat	Cryosat-2	SARAL	Sentinel-3a	Sentinel-3b	Sentinel-6a
orbital altitude	alt_gdrcp	cp alt_slcci alt_gdre			gdre	alt_gdrf alt_gdre	alt_slcci	alt_gdre	alt_gdrf			
range	range_ku											
dry tropospheric correction	dry_tropo_ecmwf											
wet tropospheric correction	GPD+					cycle <148: GPD+ cycle >=148: wet_tropo_rad	GPD+	cycle <127: GPD+ cycle >=127: wet_tropo_rad	cycle <36: GPD+ cycle >=36: wet_tropo_rad	wet_tropo_rad		
ionospheric correction	iono_alt_smooth	iono_nic09	iono_gim iono_nic09	iono_alt_smooth	iono_alt_smooth	iono_alt_smooth	iono_alt_smooth iono_gim	iono_gim	iono_gim	iono_alt_smooth		
atmospheric correction	inv_bar_mog2d_era inv_bar_mog2d_era					inv_bar_mog2d	inv_bar_mog2d_era	inv_bar_mog2d				
ocean tide	tide_ocean_fes14											
load tide	tide_load_fes14											
sea-state bias	ssb_cls	ssb_bm3 st			an2012	ssb_cls			ssb_tran2019	ssb_cls		
mean sea surface	mss_dtu15											

changed from default default

Filtering residual artifacts in along-track SLA data

Along-track SLA in the North Atlantic: post-filters

along-track dataset

- coverage increases
 with time
- seasonal sea-ice
- seasonal SLA

Sea level anomalies and Atlantic Water temperatures

SLA in CW Greenland continental shelf → black box, depths > 300m

AW Temps from ECCO and upstream Davis Strait mooring at ~300m

AW Temps and SLA positively correlated → highest correlation when AW Temps lead SLA by 4-6 months

Sea level anomalies and Atlantic Water temperatures

Sea-level anomalies on the Greenland shelf (cm)

Atlantic Water temperatures from ECCO (°C)

- 1. Seasonal minimum
- 2. Highest interannual variation
- 1. Seasonal maximum
 - 2. Lowest interannual variation

Disko Bay in situ ocean T and S data

- CTD and AXCTD: 1968-2021 (including OMG mission)
- ALAMO profiling float

ALAMO profiling float

- Deployed in Disko Bay by OMG mission
- Once per week T and S vertical profiles
- Parked on seafloor between cycles

Decomposition of sterodynamic SLA from in-situ data

Anomalies computed from bottom to 50m depth

How subsurface AW temperature variations could affect Fall/Winter sea level

Late Spring to Early Summer:

- 1. Atlantic Water flows across the continental shelf, over the sill, and into the glacier fjord
- 2. Seasonal decrease in AW shelf temperatures
- 3. Relatively small decrease of thermosteric sea level

Mid Summer to Fall/Winter

- 1. Glacier meltwater flows out of the fjord and onto the continental shelf
- 2. Freshening of shelf waters
- 3. Relatively large increase of halosteric sea level

Halosteric sea-level anomalies from the ALAMO profiling float

Conclusions

- 1. SLA on the CW Greenland shelf exhibits seasonal and interannual variability of ~10 cm
 - maximum seasonal and interannual variability occurs in Fall/Winter
- 2. Fall/Winter sterodynamic SLA anomalies are almost entirely related to salinity

+ AW temperature \rightarrow + glacier melt \rightarrow + shelf freshwater \rightarrow + halosteric SLA

- 3. Can we estimate AW temperatures close to Greenland from sea-level anomalies?
 - Not yet; direct AW thermosteric SLA signal may not be large enough.
 - However, SLA signal from fresh meltwater is large and *melt = f (AW temperature)*
- 4. *in situ* ocean T and S data from profiling floats on the shelf are extremely useful
 - Unique, ground-truth measurements of AW temperature and steric sea-level variability near the glaciers
 - Continuing these observations would enhance the value of satellite SLA on the shelf

New questions:

- 1. Can we estimate **summer melt** from **fall/winter** sea-level anomalies?
- 2. If yes, can we estimate the AW temperatures responsible for the summer melt?
- 3. Can ICESat-2 and SWOT provide useful SLA measurements on the Greenland shelf?

jpl.nasa.gov

© 2022. California Institute of Technology. U.S. Government sponsorship acknowledged. This work has been conducted at the Jet Propulsion Laboratory, which is operated for NASA under contract with the California Institute of Technology. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

What to see in this figure:

- 1. sea-level has two distinct signals:
- seasonal & interannual
- 2. sea-level increases in summer, decreases in winter
- 3. interannual variability is bigger in fall than in summer
- 4. cold year (2016) has low SLA maximum in fall
- 5. Warm year (2010) has high SLA maximum in fall

Next step: calculate the expected steric anomalies on shelf from ECCO

What to see in this figure:

- 1. Steric sea-level anomalies same pattern as total sea-level anomalies
- 2. Steric sea-level anomalies are ~50% of total sea-level anomalies
 - 1. Note that we don't integrate up to surface due to bad data!
- 3. Big variations in properties \rightarrow be careful when averaging data over summers!

Steric sea-level anomalies from in-situ measurements

What to see in this figure:

Sea-level anomalies

level anomalies by <100m depth.

Thermosteric sea-level anomalies

Halosteric sea-level anomalies

Slater, D. A., and F. Straneo, 2022: Submarine melting of glaciers in Greenland amplified by atmospheric warming. *Nat Geosci*, **15**, 794–799, https://doi.org/10.1038/s41561-022-01035-9.

Satellite altimetry in the North Atlantic: validation

Estimating the expected sea-level anomalies

how?

Idealized profiles of temperature and salinity

- Polar Water: -1.5°C 33 psu <100m depth
- Atlantic Water: 3°C 35 psu >300m depth

what do we find?

temperature change in Polar Water does not result in large sea-level anomalies depending on the water depth, ΔT in Atlantic water can result in several cm sea-level anomalies

Good nows: tomporature anomalias are datastable by satellite altimatry