

Coastal Case Study for Leveraging the Potential of Sentinel-6 MF FF-SAR Altimetry for Significant Wave Height

Florian Schlembach, Frithjof Ehlers, Marcel Kleinherenbrink, Marcello Passaro, Cornelis Slobbe

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) Technical University of Munich

Geoscience and Remote Sensing Delft University of Technology

OSTST 2022 Venice, 2nd of November 2022

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München

Motivation

• The coastal zone with of less than 5 km from the coast is challenging for satellite altimetry due to strongly reflective targets

- FF-SAR altimetry provides a theoretical along-track resolution of up to ~0.5 m
- Sentinel-6 MF (S6-MF) has only minor grating lobes in its along-track point target response (PTR, as compared to S3/CS2)

"What do we gain from FF-SAR altimetry for S6-MF for SWH in the coastal zone?"

Data

S6-MF data

- Passes 44, 120, 196, 18, 213; cycles 5 to 42 (year 2021)
- nearest distance-to-coast of up to 31 km (coastline = first contact with land (Wadden islands, sand bank))
- baseline F06

High-resolution SWAN-Kuststrook wave model

Operational wave model from the Deltares RWsOS North Sea forecasting system resolution (latitude/longitude): 50-1400 m / 35-2600 m

Datasets

Name	L1b: proc. type	L1b: posting rate [Hz]	L2: retracker
FFSAR-60	FF-SAR	60	CORALv2
FFSAR-140	FF-SAR	140	CORALv2
UFSAR-20	UF-SAR	20	CORALv2
PDAP-HR	UF-SAR	20	SAMOSA-based

Processed starting from Level-1a

- Baseline EUMETSAT L2

L1b processing (starting from Level-1a)

- FF-SAR processor from Kleinherenbrink et al. 2020 + extension to S6-MF
- Total illumination times: FF-SAR: 2.1 s, UF-SAR: 2.4 s
- UF-SAR: Generated using FF-SAR processor (coherent integration over burst repetition interval)

L2 processing

- coastal retracker CORALv2 (Schlembach at al. 2022)
- α_p -LUT for UF-SAR from baseline F06, FF-SAR: from ESA S6 L2 GPP project (zero-Doppler fit, T=2.1 s)
- Reduction of FFSAR-140 and FFSAR-60 estimates by linear averaging \rightarrow 20-Hz estimates
- Outlier removal with (scaled MAD) median filter (Alvera-Azcárate et al. 2012)

Methods: CORALv2 Coastal Retracker

Adaptive Interference Masking (AIM)

\rightarrow senses and masks interference within the trailing edge

Schlembach F., Passaro M., Dettmering D., Bidlot J., Seitz F.: Interference-sensitive coastal SAR altimetry retracking strategy for measuring significant wave height. Remote Sensing of Environment, 274, 112968, 10.1016/j.rse.2022.112968, 2022

Generation of a single-look SAMOSA model w_{SAM2} to produce the interference reference waveform $w_{IR}(SWH_{IR})$

 \rightarrow AIM detects interference gates and excludes them from fitting procedure \rightarrow quality of SWH estimate is improved.

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München

 $\mathbf{k}_{inf} = True(\mathbf{w}_r > \mathbf{w}_{IB})$

Methods: CORALv2 Coastal Retracker

7 1

Methods

Evaluation

Comparison with the SWAN-Kuststrook wave model

- Pearson correlation coefficient
- median offset
- percentage of cycles with high correlation (PCHC) of >= 0.8 : ratio between # of highly correlated cycles and # of all cycles

Quantity and Precision

- Number of valid records \rightarrow quality flag
- L2 noise \rightarrow absolute deviation from consecutive records

Coastal SWH variation

between coastal estimates between 1-3 km and 5-7 km off the coast and the offshore SWH values

$$\Delta_{2-30/6-30} = (1 - \frac{\text{median}(\text{SWH}_{1-3/5-7})}{\text{median}(\text{SWH}_{29-31})}) \cdot 100$$

Results: Comparison with SWAN-Kuststrook Wave Model

Statistical Analysis: correlation, median offset, PCHC

 \rightarrow high correlations up to 1-3 km band in all passes with 100% of PCHC

Results: Comparison with SWAN-Kuststrook Wave Model

all passes 0.8 (b) all passes 0.7 0.6 100 0.6 100 10

0.1

0.0

0-1

1 - 3

distance-to-coast [km]

3-5

5 - 10

Number of valid records (quantity) and L2 noise (precision)

100

90

80

20

 $\frac{10}{0}$

0-1

valid records [%]

 (\mathbf{a})

 \rightarrow high number of valid records of >70% up to 1 km from the coast

distance-to-coast [km]

3 - 5

1 - 3

→ lower L2 noise for FFSAR-140 vs UFSAR-20 in the 1-3 km band: 25 cm vs 36 cm (>30%)

UFSAR-20

5 - 10

Results: Coastal SWH Variation

 global mean attenuation of SWH towards the coastline from >3 km from offshore at 30 km amounts to 22%, with strong regional variations (Passaro et al. 2021)

 \rightarrow coastal SWH variations of up to 1 km from the coast

Results: Increase in SWH

In some cases, the SWH increases in the last 1-2 km due to strongly reflective targets in the along-track direction

Here, pass 120 with the strongly reflective sandbank (300 m in width)

0 2.5 0 FFSAR-140 interferer centre (b) interferer centre F-SAR cycle 40 pass 120 (a) 51.83°N UFSAR-20 grating lobes grating lobes SWAN-Kuststrook 2525 2.0 51.82°N range gate [bin] gate [bin] 50 50 51.81°N [II] 1.5 HMS 1.0 0 51.8°N 75 [qp] 75 Ð range 51.79°N -25100 100 -2551.78°N 0.5 125 -50125-5051.77°N 0.0 150 150 3.735°E 3.765°E 3.795°E 3.825°E 51.80 51.81 51.82 51.83 51.80 51.81 51.82 51.83 0 2 3 distance-to-coast [km] latitude [deg] latitude [deg]

 \rightarrow the grating lobes at multiples of ~300 m from the along-track PTR can be recognised

$\left(\begin{array}{c} 0\\ 0\\ -20 \end{array} \right) = \mathbf{B}$

Along-track PTR (Ehlers et al. 2022):

Conclusion

- Robust HR SWH estimates of up to 1 km from the coast: FF-SAR + S6-MF + CORALv2 coastal retracker + Outlier rejection
- FF-SAR outperforms UF-SAR in terms of correlation, PCHC, quantity and precision
- The coastal SWH variations can estimated more accurately for up to 1 km off the coast with FF-SAR

• To be submitted soon

Schlembach, Florian, Frithjof Ehlers, Marcel Kleinherenbrink, Passaro Marcello, Dettmering Denise, Seitz Florian, und Slobbe Cornelis. "Coastal Case Study for Exploiting Sentinel-6 MF Fully-Focused SAR Altimetry for Significant Wave Height" in prep.

References

- Egido, Alejandro, Salvatore Dinardo, and Christopher Ray. 2020. 'The Case for Increasing the Posting Rate in Delay/Doppler Altimeters'. *Advances in Space Research*, March. <u>https://doi.org/10.1016/j.asr.2020.03.014</u>.
- Ehlers, Frithjof, Florian Schlembach, Marcel Kleinherenbrink, and Cornelis Slobbe. 2022. 'Validity Assessment of SAMOSA Retracking for Fully-Focused SAR Altimeter Waveforms, in Review'. *Advances in Space Research*.
- Passaro, Marcello, Mark A. Hemer, Graham D. Quartly, Christian Schwatke, Denise Dettmering, and Florian Seitz. 2021.
 'Global Coastal Attenuation of Wind-Waves Observed with Radar Altimetry'. *Nature Communications* 12 (1): 3812.
 <u>https://doi.org/10.1038/s41467-021-23982-4</u>.
- Schlembach, Florian, Marcello Passaro, Denise Dettmering, Jean Bidlot, and Florian Seitz. 2022. 'Interference-Sensitive Coastal SAR Altimetry Retracking Strategy for Measuring Significant Wave Height'. *Remote Sensing of Environment* 274: 112968. <u>https://doi.org/10.1016/j.rse.2022.112968</u>.

Spare Slides

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München

ТШ

Data

Data

High-resolution SWAN-Kuststrook wave model

- Operational wave model from the Deltares RWsOS North Sea forecasting system
- Model domain: Dutch Coast and parts of the German Coast of the North Sea
- SWAN offshore wave boundary conditions from ECMWF-WAM
- Water level/current fields from WAQUA-ZUNO
- Wind fields from HIRLAM
- Bathymetry data from a combination of EMODnet (deeper parts) and Baseline (near the coast)
- resolution (latitude/longitude): 50-1400 m / 35-2600 m

Data: Increasing the posting rates for UF-SAR-processed altimetry data

Egido et al. 2020 have suggested UF-SAR waveforms with >20-Hz (40 or 80-Hz):

- Process UF-SAR waveforms at posting rates of >20-Hz, e.g. 60-Hz
- E.g. retrack the 60-Hz waveforms individually
- Average the 60-Hz estimates and form 20-Hz rates

 \rightarrow a gain in precision of the L2 estimates could be observed of ~25% for UFSAR-60 vs. UFSAR-20:

Data: Increasing the posting rates for UF-SAR-processed altimetry data

...a correlation between the averaged 20-Hz L2 estimates is introduced: **autocorrelation of detrended SWH open ocean segments** (that show an expected variability)

CORALv2 Coastal Retracker

Retracking waveforms with strong coastal interference by CORALv2 in comparison with SAMOSA+

 \rightarrow quantity of the SWH estimates is increased significantly

CORALv2: AIM (cont'd)

CORALv2 improves the quality flag by using the selective misfit \rightarrow excluding of interference gates \mathbf{k}_{inf} from the misfit calculation

misfit_{selective} =
$$100 * \sqrt{\frac{1}{N} \sum_{i}^{N} (w_{r,i} - w_{\text{SAM2},i})^2}$$

$$i \notin \mathbf{k}_{inf} = True(\mathbf{w}_{r} > \mathbf{w}_{IR})$$

$$q_{\rm CORALv1} = {\rm misfit}_{\rm selective} > 4$$

 \rightarrow AIM better determines the goodness of the fit and recovers strongly interfered waveforms \rightarrow quantity of records \uparrow

Results: L2 noise

From offshore towards the coast

Results: Comparison with SWAN-Kuststrook wave model

Statistical Analysis: offset analysis

Results: Increase in SWH

In some cases, the SWH increases in the last 1-2 km **Probability of occurence of an increase in SWH** determined based on this (empirical) criterion (per overpass)

 $\max(\text{SWH}_{0-3}) > \max(\text{SWH}_{3-5} + n_{\text{L2}})))$

n_L2: L2 noise with 0.2 m/0.3 m for FF-SAR/UF-SAR

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München

Results: Coastal SWH Variation

Mean offset with respect to the SWAN-Kuststrook wave model

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München