A new CryoSat-2 regional product for ocean applications: the Cryo-TEMPO Coastal Ocean Thematic Product

F. Nencioli¹, S. Dinardo¹, T Zilio¹, J.-A. Deguze¹, A Sanchez Roman², A. Pascual², S. Labroue¹ and J. Bouffard³

¹ Collecte Localisation Satellites, ² IMEDEA, ³ ESA 2022 OSTST, 2022-11-02

fnencioli@groupcls.com

CryoSat-2 achievements in the Coastal Ocean

Although initially not a main objective of the mission CryoSat-2 design offered **new capabilities for ocean observations**

Precursor of SAR mode processing over the ocean
 Higher resolution and smaller footprint than traditional altimeters

from https://earth.esa.int

Improvements over coastal areas

a. Better data coverage (reduced impact of land contamination)b. Higher precision (Lower SNR)c. Shorter spatial scale processes (<100 km)

 CryoSat-2 observations remain underutilized in oceanography Definition of a regional coastal ocean product (robust but simplified product to expand the user community)

The Cryo-TEMPO project

Overarching goal

Develop **agile, robust, state-of-the-art** CryoSat-2 products dedicated to five Thematic Areas

- 1. Land Ice
- 2. Sea Ice
- 3. Polar Ocean
- 4. Coastal Ocean
- 5. Inland Waters

15 Institutions across Europe involved in the consortium

The Cryo-TEMPO Coastal Ocean TDP

Area of focus: Mediterranean Region

Created from L1B and L2
20 Hz product
GOP baseline-C product

Space

-6.4 E to 36.5 E lon
30 N to 46 N lat

Mode

□ SAR and LRM observations

□ No SarIn (at the moment)

Time

16 Jul 2010 to present (full CryoSat-2 mission)

Operational production

New observations updated on a monthly basis

The Cryo-TEMPO Coastal Ocean TDP

Area of focus: Mediterranean Region

Created from L1B and L2
20 Hz product
GOP baseline-C product

Space

-6.4 E to 36.5 E lon
30 N to 46 N lat

Mode

□ SAR and LRM observations

□ No SarIn (at the moment)

Time

16 Jul 2010 to present (full CryoSat-2 mission)

Operational production

New observations updated on a monthly basis

The Cryo-TEMPO Coastal Ocean TDP

Area of focus: Mediterranean Region

Variables included

- Time
- Latitude
- Longitude
- Flags
- Variables
- Uncertainties

Flags

 Land/valid/invalid
 Instrument mode (LRM, SAR)

Variables (raw and filtered)

- > SLA
- > ADT

Created from L1B and L2
20 Hz product
GOP baseline-C product

Space

-6.4 E to 36.5 E lon
30 N to 46 N lat

Mode

□ SAR and LRM observations

□ No SarIn (at the moment)

Time

16 Jul 2010 to present (full CryoSat-2 mission)

Operational production

New observations updated on a monthly basis

Accessing the Coastal Ocean TDP

Two main access points

1. The ESA CryoSat science server https://earth.esa.int/eogateway/missions/cryostat/data

→ THE EUROPEAN SPACE AGENCY						
earth online	MISSIONS	• DATA	• NEWS	• EVENTS	• TOOLS	SEE ALL

2. The Cryo-TEMPO web portal

http://www.cpom.ucl.ac.uk/cryotempo/index.php?theme=coastaloceans

C	ryo-TEM	PO CryoSat Thematic Produ	uct Viewer		
At	bout	Product Handbook	Product Downloads	Contacts	

The Cryo-TEMPO web portal

Easiest way to quickly access and visualize the data

The Cryo-TEMPO web portal

Easiest way to quickly access and visualize the data

Time-series of average/median filtered SLA

http://www.cpom.ucl.ac.uk/cryotempo/index.php?baseline=A&version=001¶meter=sla_filtered&area=mediterranean&theme=coastalocea ns&year=2020&month=12&map_or_stats_type=stats&availability_area=all&availability_type=files&stats_type=mean_median

The Cryo-TEMPO production cycle

□ 3 year-long project

□ 1 production cycle per year (3 total):

Task1: Thematic data product specification

Task2: Processing chain setup

Task3: Reprocessed product generation

Task4: Operational product generation

Task5: Definition of evolutions

Evolutions defined based on user comments/requirements: we need your feedbacks !!!

- Current status: Task3 of Phase2
- TDP1 completed and available

• TDP2 available by end of the month

The Cryo-TEMPO TDP1

Algorithm specifications

Wet troposphere	GPD+
Dry troposphere	ECMWF
lonosphere	GIM
Altitude	WGS84
Retracker	SAMOSA+ (SAR) MLE4 (LRM)
Solid earth tide	Cartwright model
Ocean tide	FES 2014 B
Pole tide	Desai 2015 with 2017 mean pole location
DAC	MOG2D
SSB	Tran 2018
HFA	Tran 2019 (only for LRM)
MSS	Composite (DTU, SCRIPPS,CNES-CLS15)
MDT	CMEMS_2020_MED
Editing	Iterative

Corrections from CryoSat-2 L2 products

- Provided at 1Hz
- Linearly Interpolated at 20Hz

CryoTEMPO specific corrections (in bold)

- Pole Tide, MSS and MDT: bilineraly interpolated from the reference fields (Pole Tide includes a LUT for pole position)
- Global MSS but MDT specific for the Mediterranean region
- SSB, HFA, Editing and Filtering: all based on 20Hz observations

More info in the Cryo-TEMPO Product Handbook:

http://www.cpom.ucl.ac.uk/cryotempo/pdf_viewer.php?theme=polaroceans

The Cryo-TEMPO TDP1

Algorithm specifications

Wet troposphere	GPD+
Dry troposphere	ECMWF
lonosphere	GIM
Altitude	WGS84
Retracker	SAMOSA+ (SAR) MLE4 (LRM)
Solid earth tide	Cartwright model
Ocean tide	FES 2014 B
Pole tide	Desai 2015 with 2017 mean pole location
DAC	MOG2D
SSB	Tran 2018
HFA	Tran 2019 (only for LRM)
MSS	Composite (DTU, SCRIPPS,CNES-CLS15)
MDT	CMEMS_2020_MED
Editing	Iterative
Filtering	Lanczos low-pass

Corrections from CryoSat-2 L2 products

- Provided at 1Hz
- Linearly Interpolated at 20Hz

CryoTEMPO specific corrections (in bold)

- Pole Tide, MSS and MDT: bilineraly interpolated from the reference fields (Pole Tide includes a LUT for pole position)
- Global MSS but MDT specific for the Mediterranean region
- SSB, HFA, Editing and Filtering: all based on 20Hz observations

More info in the Cryo-TEMPO Product Handbook:

http://www.cpom.ucl.ac.uk/cryotempo/pdf_viewer.php?theme=polaroceans

The Cryo-TEMPO TDP1: SAMPy

- SAMOSA+: evolution of the SAMOSA retracker with enhanced performance in coastal regions (more info in Dinardo et al., 2018)
- > Python implementation specifically developed for Cryo-TEMPO
- Validation performed vs analogous products from ESA GPOD

Freely available GitHub repository of the Python implementation of the SAMOSA+ algorithm

Cls-obsnadir-dev/SAMPy Public				♣ Notifications 양 Fork 0 ☆ Star 1 ▼
<> Code 💿	Issues 🏦 Pull requests 🕑 Actions	🗄 Projects 😲 Security 🗠 Insights		
	양 main → 양 1 branch ा⊙ 0 tags		Go to file Code -	About
	fnencioli Restored .gitignore Data Addedd GOP file in Data as example		797c3a8 on 2 Jun 🕚 4 commits	Python implementation of the SAMOSA+ retracker developed within ESA Cryo- TEMPO project
			5 months ago	D Readme

<u>https://github.com/cls-obsnadir-dev/SAMPy</u>

The Cryo-TEMPO TDP1: HFA

- Correction for the correlation between significant wave height (SWH) and range errors
- Dependent on swell at the sea surface
- Computed based on **empirical models/relations** (in form of LUT)
- Correction only for LRM @ 20Hz (no SAR equivalent) (however surface flag provided at 1 Hz)
- 1. SWH @ 20 Hz filtered (Lanczos2 with 200 pts half widh window)
- 2. Portion of SWH residual converted into HFA correction (empirical relation dependent on local values of filtered SWH)

Known issue (to be verified for CryoTEMPO):

• Slight degradation of mesoscale (>50 km scale)

Example of SLA error: J3 20 Hz Cycle 20

The Cryo-TEMPO TDP1: HFA

- > Validation of the TDP1 performed against the GOP product
- Map of averaged SLA variance difference (1°x1° boxes) between GOP and Cryo-TEMPO

- Variance reduced mostly everywhere (reduced noise)
- Largest reduction in the LRM
 region
- Effect of the HFA correction

Sea Level assessment: comparison vs tide gauges in western Mediterranean sea

- Tide gauge records processed according to Sánchez-Román et al. (2020):
 - Removed tidal components

- Dynamic Atmospheric correction from AVISO website
- Corrected vertical movements from glacial isostatic adjustment (GIA)

Sea Level assessment: comparison vs tide gauges in western Mediterranean sea

- Tide gauge records processed according to Sánchez-Román et al. (2020):
 - Removed tidal components
 - Dynamic Atmospheric correction from AVISO website
 - Corrected vertical movements from glacial isostatic adjustment (GIA)

Raw SLA

- Very good correlation (0.98)...
- ...probably too good !!!
- Limitations in the approach used for the comparison, due to short time span of TDS
- Better results than official product (not shown)

Sea Level assessment: comparison vs tide gauges in western Mediterranean sea

- Tide gauge records processed according to Sánchez-Román et al. (2020):
 - Removed tidal components

Dec 14 - Feb 15

- Dynamic Atmospheric correction from AVISO website
- Corrected vertical movements from glacial isostatic adjustment (GIA)

WesternRegular productterranean SeaPeriod 1Period 2

Period 1	Period 2	
0,72	0,84	
5,07	2,44	
43	17	
49	20	
26	6	
19	18	
7	8	
28	23	
	Period 1 0,72 5,07 43 49 26 19 7 28	

Filtered SLA

- Overall consistency between Cryo-TEMPO filtered SLA and TG records
- Correlations in line with those reported for Jason-3 and Sentinel-3A in the region (although larger RMSE)
- Further refinement of the analysis
 is currently performed

Surface current assessment: comparison vs HF radar velocities in the Balearic sea

- HFR data processed according to the methodology proposed by Mulero-Martínez et al. (2021)
 - Butterworth low-pass filter (48-hours cut-off period) to remove the high frequency signal
 - HFR velocity bilinearly interpolated over the altimeter track measurement positions
 - Low-pass Loess filter (43 km cut-off wavelength) to remove the high frequencies not resolved by altimetry

Surface current assessment: comparison vs HF radar velocities in the Balearic sea

- HFR data processed according to the methodology proposed by Mulero-Martínez et al. (2021)
 - Butterworth low-pass filter (48-hours cut-off period) to remove the high frequency signal
 - HFR velocity bilinearly interpolated over the altimeter track measurement positions
 - Low-pass Loess filter (43 km cut-off wavelength) to remove the high frequencies not resolved by altimetry

- Overall consistency between Cryo-TEMPO geostrophic velocities and HFR records
- Errors between the two smaller than previously reported from analogous comparison for Saral-AltiKa observations

Evolutions for TDP2

- 1. Improvements to uncertainty estimation
- 2. Implement dedicated processing near the coast (i.e. interpolation, filtering and stitching)
- 3. Add distance-to-coast variable to dataset
- 4. Update CryoSat-2 specific tuning of correction parameters
- 5. Remove land points from dataset
- 6. Add the **Black Sea** as new area
- 7. Include Regional tide model (collaboration with Noveltis)

The Cryo-TEMPO TDP2: Uncertainty estimates

Uncertainty Estimation: Small-wavelength errors (SWE)

- Errors associated with individual measurement
- Mostly due to SWH and Distance from the Coast

Hypothesis: consecutive measurements @20 Hz observe roughly the same conditions

SLA difference of consecutive observations binned wrt to

SWH (every 10 cm)

□ Distance from the coast (every 1 km)

Error = Standard deviation of the difference within each bin / sqrt(2)

The Cryo-TEMPO TDP2: Uncertainty estimates

- Error increases with increasing SWH
- For a given SWH, error does not vary up to < 5 km from the coast

(CryoSat-2 uses modelled WTC)

 Error increases within 5 km from the coast

CryoTEMPO TDP2: Filtering/stitching SAR and LRM granules

Filter SLA after stitching the individual granules

- Filtering after stitching can reduce differences in filtered SLA at the interface
- More consistent transition between SAR and LRM filtered SLA

CryoTEMPO TDP2: Added Distance to the Coast

Computed based on GSHHG database https://www.soest.hawaii.edu/pwessel/gshhg/

The Cryo-TEMPO TDP2: Coastal masking

 In future TDP2: improved land flagging (compared to GOP product) based on on GSHHG database https://www.soest.hawaii.edu/pwessel/gshhg/

The Cryo-TEMPO TDP2: Coastal masking

- In future TDP2: improved land flagging (compared to GOP product) based on on GSHHG database https://www.soest.hawaii.edu/pwessel/gshhg/
- Large number of invalid points (especially around complex morphologies)
- Improved interpolation/extrapolation methods for geophysical corrections to be explored

CryoTEMPO TDP2: Tuning of Correction Parameters

Spectral analysis: raw vs filtered SLA

- Maybe cutoff too large?
- Could be closer to the LRM plateau
- Smaller cutoff (25 km) to be further tested with the TUGs

Conclusions

- CryoSat-2 observations remain underutilized in oceanography despite the advantages of SAR technology
- Dedicated CryoTEMPO regional coastal product in the Mediterranean sea
- Initial comparison with in-situ observations shows analogous or better performance than existing satellites
- Still room for improvements in the near-shore region (<5 km from the coast)
- Iterative cycle to improve Cryo-TEMPO products each year
- User feedbacks will be an integral part of the process to further improve the product performance near the coast

