Small scale wave height variability and wave groups

M. De Carlo (<u>mdecarlo@ifremer.fr</u>, LOPS/CNES), F. Ardhuin (LOPS/CNRS), A. Ollivier (CLS)

Bump on the SWH and SLA spectrum

- Characterization of the Hs variability below 100 km is an ongoing topic interesting the community (e.g. SWOT)
- Multimission analysis showing bump appears in Swell conditions. (Ollivier et al. 2022, LPS Poster)
- \Rightarrow Suggests relationship with waves

Bump on the SWH and SLA spectrum

- Characterization of the Hs variability below 100 km is an ongoing topic interesting the community (e.g. SWOT)
- Multimission analysis showing bump appears in Swell conditions. (Ollivier et al. 2022, LPS Poster)

HOW?

Sea states and spectrum

Wind Sea

Broad \geq higher frequency \triangleright

Swell

Modulation by wave groups

- Simulation of a surface from broad (blue) and narrow (orange) spectra (inverse FFT) /!\ homogeneous conditions
- Modulation resulting from linear sum. of sinus
- Free surface is modulated by wave groups
 - \rightarrow envelope is key !
 - Depending on the **groups** scale and the size of the footprint → modulate Hs estimate

- Simulation of a surface from broad spectrum (real part of iFFT)
- Envelope is computed from surface (modulus of iFFT)

- Simulation of a surface from broad spectrum (real part of iFFT)
- Envelope is computed from surface (modulus of iFFT)
- From FFT :
 - Envelope spectrum
 - Envelope² spectrum
 - Waves spectrum

- Simulation of a surface from broad spectrum (real part of iFFT)
- Envelope is computed from surface (modulus of iFFT)
- From FFT :
 - Envelope spectrum
 - Envelope² spectrum
 - Waves spectrum
- From Rice 1944, Nolte & Hsu 1972 : Normalized spectra of env and env² are similar at low frequencies

- Simulation of a surface from broad spectrum (real part of iFFT)
- Envelope is computed from surface (modulus of iFFT)
- From FFT :
 - Envelope spectrum
 - Envelope² spectrum
 - Waves spectrum
- From Rice 1944, Nolte & Hsu 1972 : Normalized spectra of env and env² are similar at low frequencies
 - + spectra env² = **autocorrelation** of wave spectra

And so what?

And so what?

Reminder :

Hs is an integrated value that can be linked to the Hrms value :

$$H_s = \sqrt{2} H_{rms} = \sqrt{8} < env >$$

And so what?

Reminder :

Hs is an integrated value that can be linked to the Hrms value :

$$H_s = \sqrt{2} H_{rms} = \sqrt{8} < env >$$

Example with CFOSAT data

14 Feb 2020 - 09:06 - 09:16

- Background color: Hs from WW3 model -
- Colocalisation of nadir and spectral measurements
- Nadir measurements:

16

14

12

from WW3 model [m]

8

- 6

- mean(Hs) per box -
- std(Hs) per box -
- Off-nadir measurement : 2D spectra in boxes

Example with CFOSAT data

14 Feb 2020 - 09:06 - 09:16

- Background color: Hs from WW3 model
- Colocalisation of nadir and spectral measurements
- Nadir measurements:

16

14

12

from WW3 model [m]

8

6

- mean(Hs) per box -
- std(Hs) per box -
- Off-nadir measurement : 2D spectra in boxes
- Focus on 2 boxes :
 - 1) mean(Hs) = 9.3 m, std(Hs) = 0.49 m2) mean(Hs) = 9.3 m, std(Hs) = 0.88 m

Spectra from boxes

Box 1) mean(Hs) = 9.3m, std(Hs) = 0.49 m

Box 2) mean(Hs) = 9.3m, std(Hs) = 0.88 m

N.B. : same colorbar does not allow to see box 1/ spectrum

Spectra from boxes

Box 1) mean(Hs) = 9.3m, std(Hs) = 0.49 m

Box 2) mean(Hs) = 9.3m, std(Hs) = 0.88 m

N.B. : colorbar for box 1) = colorbar for box 2) divided by 4

Simulated surface from spectrum

Box 1) mean(Hs) = 9.3m, std(Hs) = 0.49 m

Box 2) mean(Hs) = 9.3m, std(Hs) = 0.88 m

Simulated surface from spectrum

Box 1) mean(Hs) = 9.3m, std(Hs) = 0.49 m Box 2) mean(Hs) = 9.3m, std(Hs) = 0.88 m Wide blurred spectrum Narrow spectrum 8000 0.02 0.02 Small and 'random' crests Long and organised crests 0.01 0.01 0.00 0.00 Wind sea Swell -0.01 -0.02 -0.01 0.00 0.01 0.02 <u></u> ⊳___ Surface Surface ۲ [km] ۲ [km] X [km] X [km]

- 35000

30000

25000

20000

15000

10000

5000

18

2D Hs spectra from autocorrelation

Box 1) mean(Hs) = 9.3m, std(Hs) = 0.49 m

- 35000 8000 Energy of Hs is spread over Hs energy concentrated to \Rightarrow \Rightarrow 0.02 0.02 30000 a large range of scales small k, i.e. long scales 25000 0.01 0.01 6000 20000 0.00 0.00 15000 -0.01 10000 0.020 0.020 [m⁴/rad²] -0.02 5000 0.015 0.015 -0.03 4000 -0.02 -0.01 0.00 0.01 0.02 15000 -0.01 0.00 0.01 0.02 0.010 0.010 [m⁴/rad²] (m) 0.005 0.000 -0.005 K [rad/m] 0.000 0.000 -0.005 12500 3000 10000 2000 7500 Hs spectrum Hs spectrum from from 5000 -0.010 -0.010 autocorrelation autocorrelation 1000 2500 -0.015 -0.015 -0.020 -0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 0.020 -0.020 -0.020 -0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 0.020 Kx [rad/m] Kx [rad/m] 19

Box 2) mean(Hs) = 9.3m, std(Hs) = 0.88 m

N.B. : colorbar for box 1) = colorbar for box 2) divided by 4

1D Hs spectra from autocorrelation

Box 1) mean(Hs) = 9.3m, std(Hs) = 0.49 m

Box 2) mean(Hs) = 9.3m, std(Hs) = 0.88 m

Coming back to our SWH along track spectrum

 \Rightarrow Similar order of magnitude for the 'bump' at 10 km

Coming back to our SWH along track spectrum

- \Rightarrow Similar order of magnitude for the 'bump' at 10 km
- ⇒ The drop of energy (towards small scales) happens before in real data (J3) than in the model : possible instrumental effect (antenna gain pattern TBC)

Nadir footprint scale

- \rightarrow for LRM (isotropic)
- → to be updated for nadir doppler SAR mode

Nadir footprint scale

- \rightarrow for LRM (isotropic)
- → to be updated for nadir doppler SAR mode

⇒ Waves have no signature above the altimeter footprint

Wave groups may have a signature to larger scales, depending on wave conditions

Thank you for your attention !