

DEVELOPMENT OF A NEW UAV-BASED LIDAR ALTIMETRY SOLUTION FOR IN-SITU WAVE SPECTRUM ESTIMATION

V.Fouqueau, JC.Poisson, G.Valladeau (vortex.io, France) F.Boy, C.Tourain, C.Tison (CNES, France)

www.vortex-io.fr/

PRESENTATION OF THE ALTIMETER TECHNOLOGY

Altimeter characteristics

- General
- Compatible with all drones capable of carrying 1kg
- 900 gr / 3h of autonomy

- Lidar
- cm-level accuracy
- from 50 cm to 90 meters range
- 8 beams on a 16.3° swath

- Camera
- 8 Megapixels
- water masks
- Orthophoto
- Images of the water surface

Computation of the sea surface height :

- > Computation of the **precise position** of the altimeter by PPK positioning
- Computation of the sea surface height by correcting the precise position of the altimeter by the air drought measured by the LiDAR

OBJECTIVES

Can the vortex.io light-weight altimeter embedded on a UAV measure directional wave spectrum, to become a new Cal/Val system ?

VS

Sea surface height measurement

Computation of **directional** wave spectrum from the SSH measurements

Directional wave spectrum

We can write the directional wave spectrum $S(f, \theta)$ as :

 $S(f, \theta) = E(f) D(f, \theta)$

With E(f) the non-directional wave spectrum and $D(f, \theta)$ the directional spreading function

We need to compute an estimation of $D(f, \theta)$ and **E**(**f**) from the sea surface height measurement made by vortex.io altimeter

270

240

Direction

There are 2 types of wave systems :

DIRECTIONAL WAVE SPECTRUM DEFINITION

- \succ The swell: defined by λ et ϕ
- **The wind waves:** defined by **V** et ϕ_v

Directional wave spectrum

Describe the sea state

FLIGHT PLAN AND SIMULATIONS

Red crosses correspond to the **LiDAR** measurements

> We need to define **the flight** plan before generating the

Static flights of 20 minutes

 \blacktriangleright Measure located on a plan \rightarrow 2 drones at the same time flying in a **T-shape**

 \blacktriangleright Flight altitude \rightarrow 50 meters

- Generated from **Elfouhaily** theoretical spectrum (λ, ϕ)
- Generated with **RADARSPY** from **CNES**
- We generated the measurements only on the **16 points** that corresponds to the **LiDAR beam location** on the surface

Generation of the simulations

ESTIMATION METHOD

Observations

 $P_n(t)$ > N time series of physical quantities > We compute the cross-spectrum and noted $P_n(t)$ (can be elevation, surface auto-spectrum matrix between the N Welch's method on speed, vertical acceleration ...) Hamming windows time series observed Measurement point distributed on a \succ $\Phi_{nm}(f)$ **plan** or single point measuring directional physical quantities Non directional $\mathbb{E}[\boldsymbol{\Phi}_{nn}(\boldsymbol{f})]$ MLE **Spreading function** spectrum $\blacktriangleright \Phi_{nn}(f)$ correspond to We compute the estimation $\widehat{D}(f, \theta)$ $\hat{E}(f)$ of $\widehat{D}(f, \theta)$ with a maximum the Fourier transform of the time series $P_n(t)$ likelihood estimator $\widehat{S}(\overline{f}, \overline{\theta})$

Cross-spectrum matrix

vort

RESULTS ON SIMULATION

Simulation with **one swell system** and **gaussian noise** applied on the simulated measurements (SNR 10 dB) and 20% of missing measurements Simulation with **one swell system**, a **wind wave system** and **gaussian noise** applied on the simulated measurements **(SNR 10 dB)** and **20% of missing measurements**

- The estimation method works very well on all kind of simulations with different sea states (Multiple swell systems, wind waves) with different amplitude and direction
- > The angular spreading is due to the **missing measurements** and increased by the **gaussian noise**
- > The method works on simulation, we can test it on real data

PRESENTATION OF THE FIELD CAMPAIGN

The field deployment was performed the 1st October 2021 just outside of Saint-Jean-de-Luz bay:

- Measurement made next to a **buoy** from the French **CANDHIS** network
- Take-off from a boat
- Issue with one drone, campaign performed with one altimeter

Sea state observed :

- Very low wind
- Monochromatic swell with a 8-10 seconds period
- Low swell amplitude around 50 70 cm

The sea state is **smoother** than expected

RESULTS ON THE FIELD CAMPAIGN → SSH

Sea surface observed by vortex.io altimeter

Camera

Lidar

VORTEX.IC

> The camera records **the sea surface movements**, we can observe precisely the wave system

- > We observe precisely the swell with the LiDAR, it is a excellent measurement of sea surface height
- > Only 2 beams are represented here for the sake of clarity, but we have measurement on the 8 beams

RESULTS ON THE FIELD CAMPAIGN → SPECTRUM

Directional wave spectrum measured in Saint-Jean-de-Luz

CANDHIS buoy

Vortex.io altimeter

> The directional wave spectrum measured by vortex.io altimeter is similar to the one measured by the CANDHIS buoy

- > The accuracy is excellent for the frequency and good for the direction with an angular spreading
- > It is a first raw POC: **no post-processing or editing** has been applied to the vortex.io spectrum

CONCLUSION OF THE PROJECT

The method **works perfectly on the simulations**, we obtained excellent results on all the **different sea states** with perturbations

The **results** of the campaign are **very good**, even with an almost **calm sea surface** and only one drone

The comparison with the CANDHIS buoy tells us that our method is accurate

This project was only a proof of concept, the results exceed our expectations

Vortex.io altimeter is a valid method to measure sea swell spectrum

NEXT STEPS

ONGOING

(2
	シ

Development of a **second** estimation method based on the LiDAR and camera to increase the accuracy

Improvement of the estimation method (Filtering, post processing, drop of hamming windows with missing data ...)

Definition of the **best flight plan** and performance analysis

2023

POSSIBLE / SOON

Development of a **new altimeter** with a **grid LiDAR** to perform the measurement with **only one altimeter**

4

FINAL GOAL

Miniaturization of the altimeter to embed it with under an **autonomous drone**

Development of an **automatic product** that measure **sea state** (SSH and wave spectrum) from the coast based on **autonomous drone**

Thank you for your attention

VORTEX.IO