
NOAA's Jason-3 Products

David R. Donahue (NOAA/NESDIS/OSPO), Donald Richardson (ERT, Inc), Eric Leuliette (NOAA/NESDIS/STAR), Yongsheng Zhang (NOAA/NESDIS/NCEI) David.R.Donahue@noaa.gov, Donald.Richardson@noaa.gov, Eric.Leuliette@noaa.gov, Yongsheng.Zhang@noaa.gov

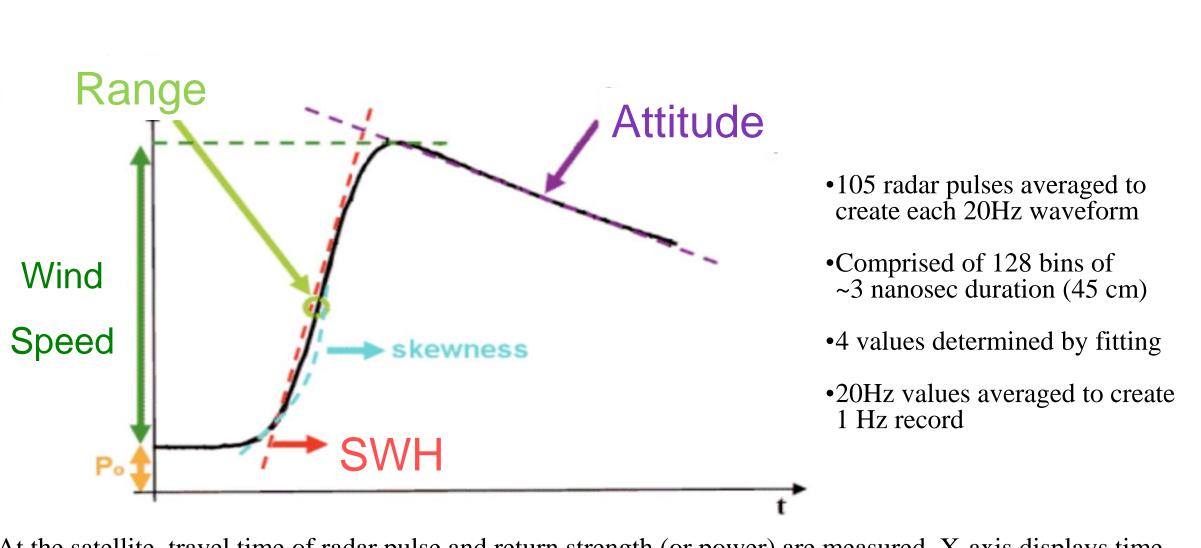
The interagency Jason-3 mission derive sea surface height, wind speed, and significant wave height from altimetry data to help track global sea level rise, ocean currents, open-ocean wind and wave conditions, and upper ocean heat content. Four partner agencies share mission responsibilities. NOAA's roles include satellite command and control, operational data processing, operational data distribution, and archive of data, processing software, and documentation. https://www.ospo.noaa.gov/Operations/JasonSeries/,https://www.ncei.noaa.gov/products/jason-satellite-products/,https://www.star.nesdis.noaa.gov/sod/lsa/Jason/

THE ALTIMETRIC SYSTEM

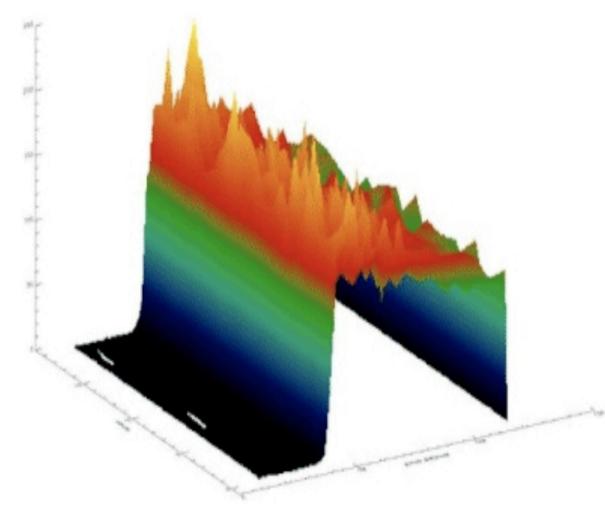
For Sea Surface Height:

Range = travel_time * c / 2

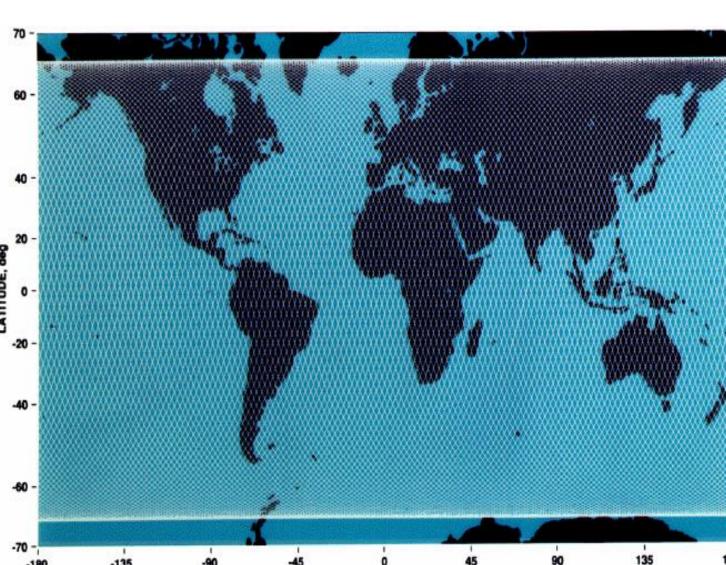
SSH = orbit altitude - rangeSmall Δ out of ~1300 km


Dyn. Topo. = SSH - geoid \sim 1 m out of \pm 120 m

Path Delay Corrections: - Wet Troposphere


- Dry Troposphere - Ionosphere

Primary Jason measurement is range (distance between the satellite and the ocean surface) Uses travel time of a radar pulse from satellite to ocean surface and back, requiring a high degree of precision, calculation, and additional corrections. Accurate measurement of satellite altitude using GPSP Global Positioning System Payload), DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) and LRA (Laser Retroreflector Array), is required to compute sea surface height (SSH)


ALTIMETRY DATA COLLECTION

At the satellite, travel time of radar pulse and return strength (or power) are measured. X-axis displays time, Y-axis displays power. Range travel time for Sea Surface Height (SSH) obtained by projecting 50% power value on leading edge of curve onto time axis. Wind speed is inversely related to return power. Significant Wave Height (SWH) related to slope of leading edge of return power.

Waveforms show open-ocean variability

Jason-3 ground track coverage every 10 days which is the same orbital path as Jason-2 before 2-Oct-2016

ESPC PROCESSING

M-NRT (Near Real Time Analyze NCEI / CLASS NJGS-ESPC-TOP1/2 NJGS-ESPC-TDV1/2 & GTS **NOAAServer FILEMANAGER** - Front end to TM-NRT processor NRTAVS QA, BUFR, Metadata modul **Managers** and Web Servers are now virtual 4-Partner data exchange (Running Jason-2/3) machines Partner Zone Auxiliary & Ancillary files with two each per DMZ (no external access actual server **WEB SERVER** (reducing 12 servers to 6). This reduces NJGS-OPS-WS1/2 hardware (Running Jason-2/3) and

NOAA's Environmental Satellite Processing Center (ESPC) Jason-3 near-real-time operational geophysical data records (OGDRs) from data collected at NOAA's Wallops and Fairbanks ground stations and delivered through the SOCC NOAA Server. ESPC also distributes OGDRs generated by EUMETSAT from the European Usingen ground station.

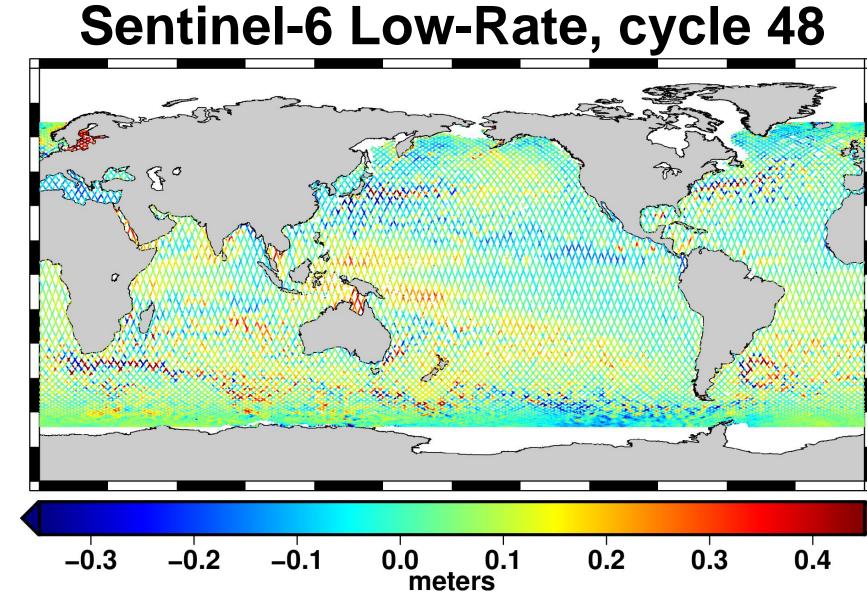
PRODUCT INFORMATION

OSTMQJASON2	OGDR Family	IGDR Family	GDR Family
Reduced 1Hz	OGDR-SSHA	IGDR-SSHA	GDR-SSHA
Hz + 20Hz	OGDR OGDR-BUFR*	IGDR	GDR
Hz + 20HZ + Waveform		S-IGDR	S-GDR
Latency	3-5 Hours	1-2 Days	~ 90 Days

* All files in NetCDF format except OGDR-BUFR, which contains no 20-Hz data

Latency and Accuracy

OGDR = operational geophysical data record **IGDR** = interim geophysical data record


GDR = (final, science quality) geophysical data record

See the Jason-3 Handbook for additional product information at https://www.ncei.noaa.gov/sites/default/files/2021-01/Jason-3%20Products%20Handbook.pdf

National Centers for Environnemental Information (NCEI) has established a data quality monitoring system for users to access graphic and numeric quality statistics and attributes for selected parameters in GDR or IGDR, which is available on the web at: https://www.ncei.noaa.gov/products/jason-satellite-products

JASON-3 and Sentinel-6 (Low-Rate) INTERCOMPARISONS

Radar Altimeter Database System (RADS) plots for Jason-3 (cycle 223) and Sentinel-6 (cycle 48) covering from 2/26/2022 to 3/8/2022. RADS is employed at NESDIS/STAR as an enterprise multi-mission algorithm providing consistent sea level anomaly, waves, and ocean surface wind speed products. RADS was developed by NESDIS/STAR, EUMETSAT, and Department of Earth Observation and Space Systems - Delft University of Technology (Delft, Netherlands) (https://www.tudelft.nl/lr/organisatie/afdelingen/space-engineering/astrodynamics-and-space-missions). For more information on RADS, see https://www.star.nesdis.noaa.gov/socd/lsa/RADS.php

PRODUCT ACCESS

- (1) Via Comprehensive Large Array-data Stewardship System (CLASS): http://www.class.noaa.gov (all file types including orbit, auxiliary) See the CLASS Tutorial at http://www.class.noaa.gov/release/data_available/jason/jason2tutorial.htm
- (2) Via WMO Gateway (GTS) in BUFR format (OGDR-BUFR only) Anyone with a GTS link should look for the following two WMO headers: NOAA (ISZX01 KNES) and EUMETSAT (ISZX01 EUMS) for Jason-2 OGDR-BUFR data in WMO/GTS bulletins/messages.
- (3) Via ESPC PDA, Product Distribution and Access (OGDR, OGDR-BUFR, & OGDR-SSHA) To submit a request for ESPC PDA, contact
- ESPCoperations@noaa.gov.

(4) All level-2 X-GDRs can be downloaded through http, ftp, THREDDS servers from NCEI: https://www.ncei.noaa.gov/products/jason-satellite-products

National Oceanic and Atmospheric Administration (NOAA) National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) Centre National d'Etudes Spatiales (CNES) European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)

