

cnes

CENTRE NATIONAL D'ÉTUDES SPATIALES

Homogeneous multi-mission along-track Sea Level Anomalies, Wave and Wind (Level-2P): implementation of Sentinel 6-MF/Jason-CS

Cecile Kocha (CLS), Alexandre Philip (CLS), Marine Lievin (CLS), Sabine Philipps (CLS), Christophe Ferrier (cnes), Isabelino Denis (Cnes), Thierry Guinle (cnes), Carolina Nogueira Loddo (eumetsat)

Contact: aviso@altimetry.fr

NTC L2P

ORBIT

IONOSPHERIC CORRECTION

SEA STATE BIAS

SEA

Context

Since the launch of TOPEX/Poseidon and ERS-1 in the early 90's more than 15 other Altimetry missions were launched and operated by different agencies.

The level 2 data (destinated to expert users) are distributed using different file formats (binary, netcdf) and contain different geophysical standards used to compute the sea level anomaly. Some dataset evolve rapidly and are regularly reprocessed, whereas other datasets, especially from finished missions are seldom reprocessed or not at all (and therefore do not profit from new standards).

L2P/L3 is a homogeneous product thanks to the joined effort from :

L2P-SALP (Service d'Altimétrie et de Localisation Précise) project supported by CNES (Centre National d'Etudes Spatiales) Sentinel-3 Marine Altimetry L2P-L3 Service (operated under an EUMETSAT contract in the frame of the COPERNICUS Programme funded by

L2P = INTER MISSION CALIBRATION

Ocean Reanalyses

Climate scales relies on reference altimeters series (TP, J1/2/3, S6A) Coverage altimeters (E1/2, EN, S3A/B, J3N collaborative r HY2A/B) and o missions (GFO) needed to retr mesoscale sig

and Forecasts

RT applications

timeters $(E1/2,$		on Poseidon			2020 report] J3 GDRF	94]					oue, 20.
e missions (AL,	WET TROPOSP HERE	GPD+ [Fernandes and Lazaro, 2016]	JMR (GDR E) radiome ter	AMR radiometer	AMR radiometer (c>170 from L2 GD RF)	[Fernandes	GPD+ s and Lazaro, 201 6]	MWR radiom eter reproces sed	Neuronal Network (5 entries) V4	MWR 3 radiometer	GFO Rad meter a ECMW mode
FO, C2) , are	DRY TROPOSP HERE	ERA5 (1-hour) model based									
etrieve the signals.	DYNAMICAL AT MOSPHERIC CO RRECTION	TUGO High frequencies forced w ith analysed ERA 5 pressure and wind field + inver se barometer Low frequences		TUGO HF forced with analysed ER A 5 pressure and wind field; and af ter 02/2016 MO G2D HF forced wi th analysed ECM WF pressure and wind field + inver	MOG2D HF forced with analysed EC MWF pressure an d wind [Carrere a nd Lyard, 2003; o perational version 3.2.0] + inverse baromet	TUGO High RA 5 pressi	TUGO High frequencies forced with anal RA 5 pressure and wind field + inverse b ter Low frequences		TUGO HF forced wi th analysed ERA 5 pressure and wind field; and after 02/ 2016 MOG2D HF f orced with analyse d ECMWF pressure and wind field + inv	MOG2D High frequencies for ced with analysed ECMWF pr essure and wind field [Carrer e and Lyard, 2003; operation al version 3.2.0] + inverse bar ometer Low frequencies	TUGO H frequent es force with an sed ERA pressur nd wind eld + im se baro
	OCEAN TIDE			se barometer LF				FES 201	4 B [Carrère et al. 2016]		quence
Ocean analyses	INTERNAL TIDE	DE ZARON 2019 (HRETv8.1 tidal frequencies: M2, K1, S2, O1)								2, K1, S2, O1)	

Poseidon Topex	Jason 1	Jason 2	Jason 3	ERS-1	ERS-2	ENVISAT	SARAL	Sentinel 3A	Sentinel 3B	Geosat FO	Cryosat 2	HY 2A	НҮ 2В	S6A SAR/LRM	cor
GSFC STD18	POE-E	POE-F	POE-F	F	Reaper	POE-E	POE-F	PO	E-F	GSFC	POE-F	POE-D	POE-F	POE-F	ba
Filtered du frequency altimete urements [Guibbau ; DORIS on Po	ual- r range meas d et al. 2015] sseidon	Filtered dual- frequency altimet er range [Guibba ud et al. 2015] (from SSB C- band)	Filtered dual- frequency altimet er from [Guibbau d et al. 2015] & c> 170 from L2 GDRF	Reaper N IC09 mo del [Scha rroo and Smith, 20 10]	GIM [Ijima et al., 1999]	Filtered from L2 ; c>65 GIM [Iji ma et al., 1999] correct ed for 8mm bi as	GIM [Ijima et al., 1999]	Filtered	from L2		GIM [Ijima	a et al., 1999]		Filtered dual- frequency alti meter range from L2 LR	Nu ret N
Non parametric [N. Tran et al. 2010] ; BM4 on Poseidon	Non para metric [N. Tran 2015]	Non parametric [N. Tran 2012]	Non parametric from J2 [N. Tran 2012] & c>170 from [N. Tran 2020 report] J3 GDRF	BM3 [Ga spar and Ogor, 19 94]	Non parametr ic [Mertz et al., 2005]	Non parametr ic [N. Tran 2017]	Non parametric [N. Tran 2018]	No parametric [N	on N. Tran 2012]	Non para metric [Tra n and Labr oue, 2010]	Non parametri c [N. Tran 2018] Baseline C	Non Parametr ic [N. Tran 2012 Vent S. Labroue]	L2 product	Non parametr ic from [N. Tran 2020] J3 GDRF	fo ve
GPD+ [Fernandes and Lazaro, 2016]	JMR (GDR E) radiome ter	AMR radiometer	AMR radiometer (c>170 from L2 GD RF)	[Fernandes	GPD+ 5 and Lazaro, 201 6]	MWR radiom eter reproces sed	Neuronal Network (5 entries) V4	MWR 3 ra	adiometer	GFO Radio meter and ECMWF model	GPD+ [Fernan des and Lazar o, 2016]	ECMWI	F model	Radiometer H R/LR	
						ERA5	(1-hour) model based								
TUGO High frequen ith analysed 5 pressure and wind se barometer Low	cies forced w I ERA d field + inver frequences	TUGO HF forced with analysed ER A 5 pressure and wind field; and af ter 02/2016 MO G2D HF forced wi th analysed ECM WF pressure and wind field + inver se barometer LF	MOG2D HF forced with analysed EC MWF pressure an d wind [Carrere a nd Lyard, 2003; o perational version 3.2.0] + inverse baromet er LF	TUGO High RA 5 pressu	frequencies forced ure and wind field - ter Low frequen	with analysed E inverse barome ces	TUGO HF forced wi th analysed ERA 5 pressure and wind field; and after 02/ 2016 MOG2D HF f orced with analyse d ECMWF pressure and wind field + inv erse barometer LF	MOG2D High f ced with analy essure and wir e and Lyard, 20 al version 3.2.0 ometer Low	requencies for sed ECMWF pr nd field [Carrer 003; operation] + inverse bar frequencies	TUGO High frequenci es forced with analy sed ERA 5 pressure a nd wind fi eld + inver se barome ter Low fre quences	JGO High requenci s forcedTUGO High frequencies forced wi th analysed ERA 5 pressure and wind field ; and after 02/2016 M OG2D High frequencies forced wi d wind fi th analysed ECMWF pressure and wind field + inver s barome r Low fre quencesMOG2D High fr with analysed and wind field d + inverse barometer L u			equencies forced CMWF pressure Carrere and Lyar ional version 3.2. ometer Low freq ncies	
						EES 2014	4 B [Carrère et al. 2016]								

the European Union)	
L3-CMEMS and C3S service implemented by MERCATOR Ocean	
International	

non RT applications and ocean studies

Ocean Reanalyses

POLE TIDE	DESAI et al.2015 ; Mean Pole Location 2017
SOLID TIDE	Elastic response to tidal potential [Cartwright and Tayler, 1971 ; Cartwright and Edden, 1973]
MEAN SEA SURFACE	Composite (SCRIPPS,CNES/CLS15,DTU15)

Global Mean Sea Level Calibration

Different satellite altimetry missions have been monitoring the GMSL successively and continuously since 1993 on a welldetermined reference orbit: TOPEX/Poseidon, Jason-1, Jason-2, Jason-3 Sentinel-6 MF. and soon, Dedicated calibration phases between the successive missions, during which the satellites fly a few second apart, help to ensure the long-term stability and precise monitoring of the sea level. In addition, a permanent control of the data quality and instrumental performances, combination with the homogenization of the data processing and geophysical <u>corrections</u>, are key to produce homogeneous data that well capture the long-term evolution of the sea level.

Regional Sea Level Calibration

Reference altimeters need accurate global & regional calibration to ensure a seamless transition to build the series suitable for climate time studies.

- These biases can depend on :
- ascending/descending passes,
- latitude,
- waves,
- ...

For in-flight missions, L2P can anticipate future developments through corrections based on validated prototypes. S6-MF is the first mission to benefit from it !

Regional Sea Level Calibration for S6-MF

S6-MF/J3 tandem phase revealed sea level bias depending on waves for both SAR and LRM modes with opposite sign! Such correlation is problematic for climate users as they are not constant in space and time. Investigations shown that such behavior is mainly due to S6-MF processing. Solutions have been found (such as numerical retracker, addition of a skewness parameter in SAR or correction of ocean vertical velocity effect in SAR) and will be implemented in the future PDAP **Processing Baselines.**

In the meantime, L2P processing aims to correct the explained bias using CNES/CLS S6PP which already include the forthcoming PDAP

evolutions (see Dinardo S. et al, Sentinel-6 MF Poseidon-4 Radar Altimeter: Main Scientific Results from S6PP LRM and UF-SAR chains in the first year of the mission, submited) and NOAA's LUT for OVV effect (see Egido A. et al presentation, A Significant Wave Height Correction to Account for Vertical Wave Motion Effects in SAR Altimeter Measurements, OSTST 2022).

A look up table S6-MF minus S6PP function of SWH was implemented into L2P S6-MF products :

- Correct most of the wave dependencies observed in L2
- Ensure the continuity with next L2 evolutions
- Ensure S6A as reference mission into L3

NO L2P CORRECTION S6-MF – J3 S6-MF LRM S6-MF SAR

L2P correction : look up table based on S6PP

NISSION

L2P CORRECTED S6-MF – J3

Sea Level Anomaly function of waves

L2P S6A correct the Sea level anomaly wave dependance at high waves.

For S6A SAR further investigations see : Cadier E. et al, Leveraging S6A interleaved mode to characterize Sentinel-6A High Resolution error budget over ocean, OSTST 2022, presentation.

Residual biases need to be further investigated to correctly address them : •lonospheric correction differences between S6A and J3. Some of these are dependent on waves.

•Equatorial band is still under investigation and is less than 5mm. •Small waves : study ongoing

See Bignalet-Cazalet F., Sentinel-6 PDAP products assessment over ocean, OSTST 2022, presentation for further investigations

products without impacting other missions

Wind and wave Calibration

Calibration is divided in two main steps :

- for waves only, absolute calibration of a long reference mission against insitu data (buoys).
- a cross-calibration of all other satellites with the reference mission.

Conclusion

L2P learn from each mission with different instruments, orbit and treatments to calibrate each other to insure a more reliable earth observation.

Long term continuity on the reference orbit will be ensured thanks to L2P S6-MF for a 4th decade.

Mesoscale & small mesoscale retrieval is improved thanks to S6-MF low noise. Thus, CMEMS observation and modelling products are (positively) impacted by S6A in real time. Still, S6A needs to be complemented by other altimeters to describe and forecast ocean currents at fine scale.

OSTST meeting 2022

DOWNLOAD DATA :

•AVISO+ website https://www.aviso.altimetry.fr/en/data/products/sea-surface- height-products/global/along-track-sea-level-anomalies-l2p.html •EUMETSAT website EUMETCAST •Copernicus website https://resources.marine.copernicus.eu/product- detail/SEALEVEL GLO PHY L3 NRT OBSERVATIONS 008 044/INFORMATION

COMING SOON:

- L2P NTC S6A LRM & SAR data (side B) : 1/11/2022
- L3 NTC S6A LRM & SAR data : 15/12/2022
- L2P NRT/STC 20Hz S6A SAR : end 2022 (See Phillips et al. APO 005)
- Reprocessed data L2P NTC V4.0 : Summer 2023