

DUACS DT2021: 28 years of reprocessed sea level altimetry products

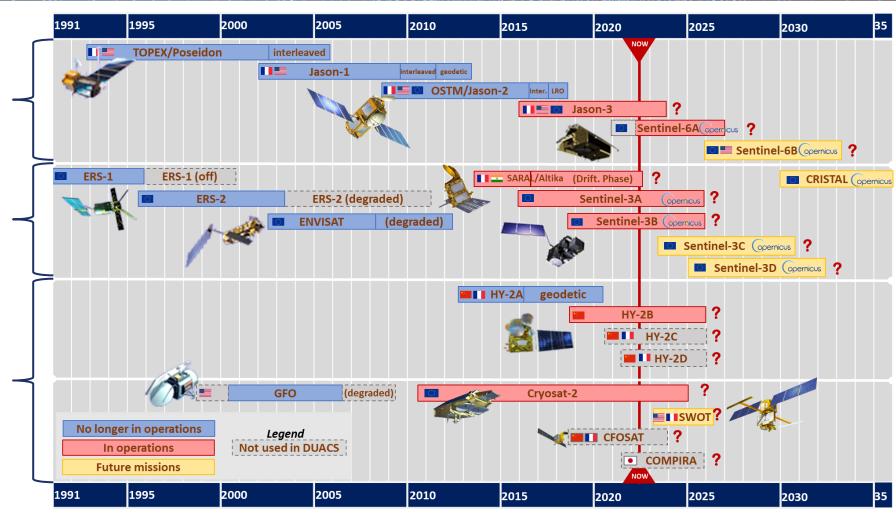
<u>Yannice Faugère</u>, Guillaume Taburet, Maxime Ballarotta, Isabelle Pujol, Jean Francois Legeais, Gwenola Maillard, Chloe Durand, Quentin Dagneau, Marine Lievin, Antonio Sanchez Roman, and Gerald Dibarboure

Context: why reprocessing Sea Level products?

Full reprocessing every 3- 4 years in the Copernicus Marine Service, driven by user needs

Main Goal Improve the homogeneity and quality of the time series

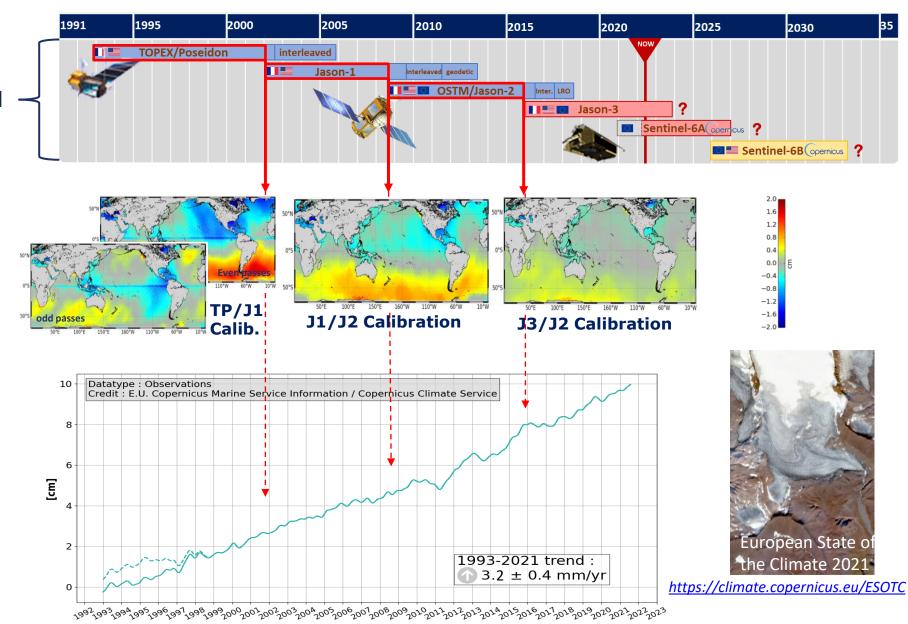
Product Level	DT 2021 improvements		
	Small scales	Large scales	
2/2P Instrumental & geophysical Standard	✓ New GDR from space agencies		
	 ✓ Atmospheric corrections TUGO+ERA 5 ✓ Barotropic tide FES 2014b ✓ Internal tide Zaron, 2019 	 ✓ New Orbit Solution GDR-F & GSFC-STD18 ✓ New calibration of the reference missions 	
3 Cross Calibration & denoising	 ✓ More permissive editing ✓ New Mean Sea Surface & Mean Profils ✓ New Global & regional MDT 	✓ TP correction (WCRP, 2018)✓ New Long Wave Length Error interpolation	
4 mapping & Eddy tracking	 ✓ Improved Optimal Interpolation parameters e.g. correlation scales ✓ Bathymetry constraint 	✓ Sea ice mask added	



Altimetric constellation: almost 30 years of observation

- SL-TAC System relies on reference altimeter (for climate)
 Topex/Poseidon, Jason series and now Sentinel-6 to retrieve large climate scales.
- Coverage altimeters (ERS1/2, Envisat, Sentinel3A/B), are needed to retrieve the mesoscale signals.
- Same for collaborative missions (GFO, SARAL, HY2B) and opportunity missions (Cryosat-2, CFOSAT)

15 missions ingested over the past 27 years (100+ years cumulated data)

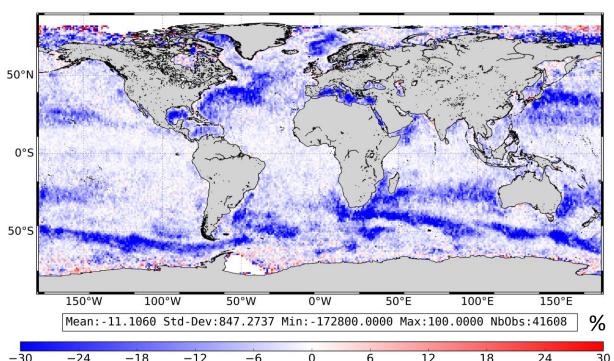


Upgrade of homogeneity and calibration to ensure climate scales monitoring

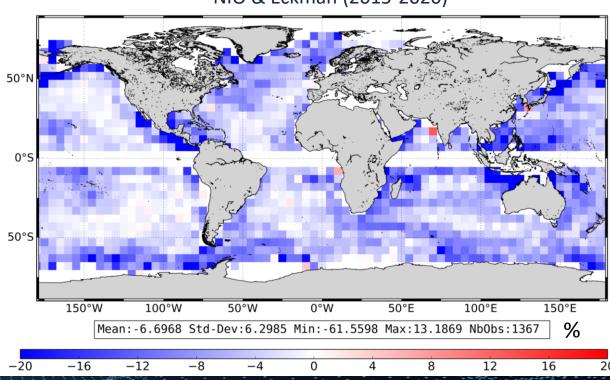
 SL-TAC System relies on reference altimeter (for climate)
 Topex/Poseidon, Jason series and now Sentinel-6 to retrieve large climate scales.

Fine calibration during tandem mission ensure the continuity

Global mean sea level has increased by ~9 cm over 1993-2021, ~2/3 of this increase occurs during the second half of this period

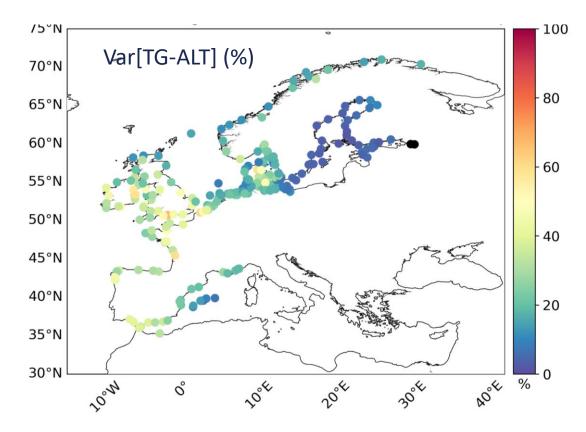


Refinement of merging algorithms to improve mesoscale...


- L2/L3/L4 improvement lead also to a better description of the mesoscale in DT2021
 - =>10% Improvement of gridded Sea Level at Global scale relative to DT2018
- Regional distribution of this improvement (in blue):
 - =>20% Improvement on at mesoscales in high variability regions
- Result confirmed on the current by comparison to drifing buoys

Error reduction using independent altimetric mission (2016-2020, focus on 65-500km wavelength)

Error reduction using independent drifting buoys corrected from NIO & Eckman (2015-2020)



GLOBAL PRODUCTS	DT2021	DT2018	improv. DT2021
R	0,90	0,90	_
rmsd (cm)	4.38 (0,01)	4.48 (0,01)	2 %
var TG (cm²)	104 (1)		
var ALT(cm²)	92 (1)	91 (1)	
var TG-ALT (cm²)	19 (1)	20 (1)	5 %
Distance TG	83 km	89 km	7 %
data pairs	1.464.531	1.457.377	0.5 %
nStations	266		

⁽⁾ uncertainties (error bars) computed from the bootstrap method using 1000 iterations

DT2021 product with larger variance. Better results in terms of RMSD and variance diff.

Download products & informations

Sea Level products and associated documentation are available at several:

2-Satellite Global gridded maps Global MSL

Climate Data Store

All Satellite Global along track Sea level
All Satellite Global gridded Sea level and current
Regional products (Europe, Arctic)
Global & Regional MSL
Climatology and other Ocean Index

Marine Service Catalogue

L2p products altimetry products
Eddy Atlas
Lyapunov exponent
Experimental products

CNES/Aviso Catalogue

For more info see https://duacs.cls.fr/

contact: yfaugere@groupcls.com