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Background and motivation: |

* Global- and basin-scale models with eddying resolution + atmospheric forcing fields
+ tidal forcing are still relatively new.
* First done in US Navy HYCOM simulations (Arbic et al. 2010, 2012, 2018, references therein)

. Hi%her)-resolution simulations performed in NASA JPL runs of MITgcm (Rocha et al. 2016,
others

 Now being done in US NOAA model MOMS6, as well in three different simulations of NEMO—
Nolrt)h Atlantic 1/60° (Grenoble), global 1/12° (Toulouse), global 1/12° (Nadia Pinardi group in
Italy

* Such models carry stationary internal tides, nonstationary internal tides, and a
partial internal gravity wave (IGW) continuum

* The latter was first shown in Miiller et al. 2015 paper using HYCOM results
e Subsequently shown in several papers using HYCOM and MITgecm

* Because internal tides and gravity waves will have strong sngnatures in observations
from SWOT and the velocity-measuring missions S-MODE/SKIM/WACM, such
models are being used to plan these missions.

* Important to compare such models to observations.



Background and motivation: |l

* Here we will show some model comparisons with
 Historical current meters
* AVISO
* McLane profilers
* Along-track altimetry
 Surface drifters

* NOTE Chereskin talk, Soares poster—include comparisons of along-track
wavenumber spectra in models vs. ADCP data

* NOTE Buijsman poster—include comparisons of depth-integrated dissipation
in models vs. fine- and micro-structure observations



Historical current meter archive

* Not great vertical coverage, but thousands of instruments...



Models vs. historical mooring archive (Luecke
et al., in review)
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Spatial correlations and energy levels in
model vs. mooring comparisons

1/12.5° + 1/25° HYCOM has a higher spatial correlation with observations than 1/12° + 1/24° +
1/48° MITgcm, across all frequency bands examined

Why?

Speculation: as an operational model, HYCOM has been tuned to accurately capture western
boundary currents, stratification, etc.

Advantage of MITgcm lies in supertidal band—more realistic energy levels (consistent with
Savage et al. 2017)



Models vs. AVISO (Luecke
et al., in review)

Use AVISO to get more spatial coverage for a specific band (low-
frequency geostrophic flow).

HYCOM has higher spatial correlation but too much energy,
relative to AVISO.




McLane profilers

* Fantastic vertical coverage, but not many of them.

* We are examining vertical wavenumber spectra but will only show
frequency spectra here.

* We show results using a regional model, forced at the boundaries

with the global 1/48t degree MITgcm, with more frequent output (10
minutes, vs. hourly), and:

e one-to-one resolution (same as global model)

* increased horizontal resolution (X8)

* increased vertical resolution (X3)

* increased resolution in both horizontal and vertical directions



Model domain, high-resolution regional simulation

--Performed on Niagara supercomputer at University of
Toronto
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Total Kmetlc Energy Spectra of Rotary Velomty at 620m
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Terri Chereskin’s talk: w/o internal tide boundary conditions,
a regional model has an insufficiently energetic IGW spectrum From Arin Nelson et al., in preparation

This work: with internal tide boundary conditions + increase in resolution,
IGW continuum energy goes up



Along-track altimetry

* We compare both stationary and non-stationary internal tides to
results computed from altimetry



Globally averaged
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Tidal forcing in MITgcm runs

e Overly large internal (and barotropic) tides are in part due
to lack of wave drag.

e But large errors in the barotropic tides also stem from the
astronomical forcing.

* The intent was to solve du/dt + ... = -V(n-niq-nSAL), with
the SAL term ng, approximated by 0.1121%n (scalar
apprOX|mat|on)S

* Instead they solved du/dt + ... =- V(n-1.1121*ngy)

* The astronomical forcing was too large by about 11% and
there was no SAL

e SAL omissions are known to cause large phase errors
(Hendershott 1972, Gordeev et al. 1977)



Semi-diurnal nonstationary variance fraction (SNVF)
in HYCOM vs. altimetry (Nelson et al. 2019)
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Large nonstationarity in equatorial regions consistent with results of Buijsman et al. (2017) .



Surface drifters

* Yu et al. (2019) compared surface kinetic energy in MITgcm to
drifters.

* Near-inertial motions too weak
* Tidal motions too strong

* Preliminary results with a short HYCOM record suggest

* Near-inertial motions closer to observations due to more frequent coupling
with atmosphere

* Tidal motions closer to observations due to wave drag (and more correct
forcing)

* Analysis of one-year HYCOM record ongoing



Summary

Comparisons of internal tides and gravity waves in four global simulations (HYCOM, MITgcm, NEMO, MOM®6) with
observations are ongoing.

We use

Historical current meters
AVISO

McLane profilers
Along-track altimetry
Surface drifters

Some general conclusions:

Higher horizontal and vertical resolution (especially in MITgcm) makes for a better-represented internal gravity wave continuum
spectrum

HYCOM has a higher spatial correlation with observations than MITgcm, probably due to substantial tuning done for operational
purposes

I\/IIITgcm, MOM®6, HYCOM, NEMO internal tides run without extra damping such as topographic wave drag are larger than in
altimetry

HYCOM tide simulations predict the geography of non-stationary internal tides relatively well.
Preliminary HYCOM comparison to surface drifters indicates closer agreement than MITgcm in near-inertial and tidal bands

Suggested grand challenge for SWOT: test the ability of HYCOM/NEMO/MITgcm to accurately phase-predict non-
stationary internal tides?

Suggestion brought up at SWOT meeting: should the project invest in several moorinF
ocean to validate both empirical and hydrodynamical global internal tide/wave mode

s?placed around the global
S
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AVAILABLE NOW

A new book from GODAE OceanView

New Frontiers
in Operational
Oceanography

Edited by Eric P. Chassignet GODAE OcaanVirw
Ananda Pascual, Joaquin Tintoré,
and Jacques Verron

Available at www.godae-oceanview.o

The implementation of operational
oceanography in the past 15 years has
provided many societal benefits and has led
to many countries adopting a formal roadmap
for providing ocean forecasts. Continuing the
tradition of two very successful intemational
summer schools held in Framce in 2004
(Chassignet and Vemon, 2006) and in
Australia in 2010 (Schiller and Brassington,
2011), a third intemational school that
focused on frontier research in operational
oceanography was held in Majorca in 2017.

In the coming years, graduate students and
young scientists will be challenged by many
new observations (SWOT, Sentinel, AUVs,
floats, etc), complex high-resolution
numerical models and data assimilation (high
resolution,  predictability,  uncertainty,
changing computing platforms, etc.), and the
need to work on many scales (open ocean-
shelf interactions, coupled ocean-ice-
atmosphere, biogeochemistry, etc.). The latter
school brought together senior experts and
young researchers (pre- and post-doctorate)
from across the world and exposed them to
the [atest research in oceanography.
specifically how it will impact operational
oceanography. This boek is a compilation of
the lectures presented at the school and
presents a summary of the cument state-of-
the-art in operational oceanography research.

rg and amazon.com
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A Primer on Global Internal Tide and
Internal Gravity Wave Continuum
Modeling in HYCOM and MITgecm
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Models vs. AVISO (Luecke
et al., in review)

Use AVISO to get more spatial coverage for a specific band (low-
frequency geostrophic flow).

HYCOM has higher spatial correlation but too much energy, relative tc
AVISO.




One more note on high-resolution simulation

* Yulin Pan, Arbic, Nelson, Menemenlis, Peltier, Xu, and Li: recently
submitted a paper elucidating the mechanism behind the IGW
continuum spectrum in the Toronto run.

e Answer: Induced diffusion.



Rotary spectra of kinetic energy at two MclLane Profiler Locations
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WKB-stretched over 200-1000 meters

_ McLane Profilers

- Global 1/25° HYCOM
_ Global 1/48° MiTgem

--From Ansong et al., in preparation
--McLane Profiler data from Matthew
Alford (thanks also to Gunnar Voet)
--Model/data comparison by Arin Nelson
--Following initial calculations by Joseph
Ansong and critique by Matthew Alford
and Eric Kunze
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Amplitude (cm) of the stationary component of

the principal lunar semidiurnal tide M, in

HYCOM (top) and altimetry (bottom). The HYCOM
amplitudes have been corrected for the effects of
the short duration of the model output record.
Numbers represent the fraction of HYCOM variance
to altimetry variance.

Determined by spatially high-passing amplitudes
of total tidal SSH (as in Ray and Mitchum 1996)

NOTE “DEAD SPOT” IN EQUATORIAL PACIFIC

Buijsman et al., paper in preparation

(Carrere et. al.), another paper in preparation,
shows that our HYCOM results also model internal
tide phases well enough to be used as corrections in
some regions.

More work remains to get them to a level
comparable to those of the best empirical models.



Models vs. mooring archive (Luecke et al., in
review)

1/12.5° + 1/25° HYCOM (bluish symbols)
has a higher spatial correlation with
oW D spua observations than

. 1/12° + 1/24° + 1/48° MITgcm

L -

(orange/red symbols),
across all frequency bands examined
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