Towards GOT5 Miscellaneous Points on Polar Tides, Coastal Tides, and Minor Tides

Richard Ray

NASA Goddard Space Flight Center

OSTST meeting

Towards GOT5 Miscellaneous Points on Polar Tides, Coastal Tides, and Minor Tides

Richard Ray

NASA Goddard Space Flight Center

OSTST meeting

Degree-3 M₁ Tide

P. L. Woodworth (2019), "The global distribution of the M1 ocean tide," Ocean Sciences, 15, 431-442.

Ocean response to Y_{3,1} spherical harmonic of astronomical potential

Degree-3 M₁ Tide

P. L. Woodworth (2019), "The global distribution of the M1 ocean tide," Ocean Sciences, 15, 431-442.

GOT5

(via inference) GOT5

Frequency separation = 1 cycle / 8.8 years

Degree-3 Terdiurnal M₃ Tide

Ocean response to Y_{3,3} spherical harmonic of astronomical potential

GOT5 (preliminary)

Terdiurnal M₃

Amplitude of GRACE residuals at M₃ frequency

Terdiurnal M₃

Amplitude of GRACE residuals at M₃ frequency

Terdiurnal M₃

Amplitude of GRACE residuals at M3 frequency

Red dot – Thevenard tide gauge

Astronomical Tidal Potential (deg 2)

Diurnal band

GOT4.x was distributed with 4 major diurnals, 4 major semidiurnals (plus M4) FES2004 was distributed with same + 2N2. FES2014 was distributed with more, but many not data-constrained

Semidiurnal band

DART station 46419 (North Pacific)

Semidiurnal Tidal Admittance

DART station 46419 (North Pacific)

Minor Tides in Diurnal & Semidiurnal Bands Infer them or estimate directly?

- Inference

 admittance interpolation vs extrapolation.
 - Extrapolation is risky for $2Q_1$, J_1 , OO_1 , ε_2

•When altimeter time series was short, we had to infer; poor SNR. •As time series lengthens, more tides can be estimated directly.

GRACE Range-Acceleration Residuals by Tidal Constituent: Diurnal Band

Prior model = GOT4.7, based on extrapolation of admittances

Note: OO1 is a smaller tide than J1, but is higher frequency at edge of band, implying farther extrapolation of diurnal admittance, implying larger errors

GOT5

GOT5 minus (inferred) GOT4.7

GOT4.7 Acceleration Residuals wrt GOT4.7 admittance extrapolation

GRACE Range-Acceleration Residuals by Tidal Constituent: Semidiurnal Band

Prior model = GOT4.7, based on extrapolation of admittances

Larger mu2 residuals show presence on nonlinear 2MS2

In general, mu2 is 20% larger than 2N2, so color table adjusted accordingly

Can we map the nonlinear $2MS_2$ coinciding with μ_2 ?

GOT5 minus (inferred) GOT5 = $2MS_2$?

RMS differences (mm) with ~150 bottom-pressure stations

	2Q1 Direct	2Q1 Infer	P1 Direct	P1 Infer	J1 Direct	J1 Infer	001 Direct	001 Infer	mu2 Direct	mu2 Infer	nu2 Direct	nu2 Infe
GOT4.7			2.34	2.02								
GOT4.10c			2.45	1.91								
GOT5 β	0.63	0.84	1.48	1.79	0.97	1.74	0.93	2.53	0.79	2.50	0.89	0.7
HAM12			1.99	1.91								
FES2014*			1.38	1.74	4.50	1.71			0.96	2.59	0.90	0.70

* Warning: FES2014 may have assimilated some test stations

hydrodynamic only

Recommendations for Handling Minor Tides

M1 nu2

Tides affected by nonlinearity must be directly estimated (but not everywhere?) mu2 (2MS₂) L2 (2MN₂) tau1 (MP₁)

Tides at edges of bands can now be directly estimated (depending on SNR). **2Q1** J1 001 sigma1

Tides in middle of bands can still be inferred (admittances interpolated, not extrapolated).

A little nonlinear at mu2

Valparaiso, Chile

TOPEX + Jason along-track estimates of M3 27 years of altimeter measurements

TOPEX + Jason along-track estimates of M3 27 years of altimeter measurements

Discrepancies between Tide Models and Along-Track Altimetry

Discrepancies between Tide Models and Along-Track Altimetry

M2 Residuals

25 cm

(Noisy) Tide Residual Amplitudes from Altimetry

Envisat only

SARAL only

Prior = FES2014

Cryosat-2 only

