River levels from multi-mission satellite altimetry, a statistical

 approachKarina Nielsen ${ }^{1}$, Angelica Tarpanelli ${ }^{2}$, Elena Zakharova ${ }^{3}$, Jérôme Beveniste ${ }^{4}$
${ }^{1}$ Division of Geodesy, National Space Institute, Technical University of Denmark (DTU)
${ }^{2}$ Research Institute for Geo-Hydrological Protection, Italy
${ }^{3}$ Institute of Water Problem, RAS, Moscow, Russia
${ }^{4}$ European Space Agency, Italy

DTU Space
National Space Institute

RIDESAT

RIDESAT: RIver flow monitoring and Discharge Estimation by integrating multiple SATellite data

A collaboration between:

- Estimate river discharge from the use of multiple sensors; Altimetry, thermal, and optical (NIR bands)

Background and motivation

- Goal: To estimate the river levels as accurate and detailed as possible
- Limit: Single altimetry missions have limitations in temporal and spatial coverage

Background and motivation

- Goal: To estimate the river levels as accurate and detailed as possible
- Limit: Single altimetry missions have limitations in temporal and spatial coverage

Background and motivation

- Goal: To estimate the river level as accurate and detailed as possible
- Challenge: Topography and erroneous observations makes this challenging

Google earth

Global surface water, occurrence mask

River model, state-space model

River model observation part

$$
H_{i}=\eta_{t_{i}} \alpha\left(x_{i}\right)+\tau\left(x_{i}\right)+\beta\left(s a t_{i}\right)+\epsilon_{i}
$$

- Amplitude: $\alpha\left(x_{i}\right)$ is a cubic spline that describes the amplitude term assumed to be positive
- Topography : $\tau\left(x_{i}\right)$ is a cubic spline that describes the topography term assumed to be increasing as a function of distance.
- Bias: $\beta\left(s a t_{i}\right)$ is a bias term depending on the satellite
- Error term: ϵ_{i} follows a normal distribution $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma_{\epsilon}^{2}\right)$

River model process part (AR1)

$$
\eta_{t_{i}}=\rho \eta_{t_{i-1}}+\xi_{i}, \quad-1<\rho<1, \quad \xi_{i} \sim \mathcal{N}\left(0, \sigma_{\xi}^{2}\right)
$$

Implementation

The model is implemented using the ' R ' package TMB (Template Model Builder)

Ensuring robustness

- Letting the error term ϵ_{i} follow a mixtures between a normal and a Cauchy distribution makes the solution more robust
- Problem: convergence problems (encounter ridge problem) :-(
- Solution: Apply weights iterative, convergence :-), and fast :-)

Weights:

- Compare predicted and observed river levels
- Down weight upper $p 100$ percentile, where p is a small number below 0.1
- Estimate new river levels, ... repeat

Model input and data preparation

We apply water levels from CryoSat-2, Altika, and Sentinel-3A/B

- Use a mask to extract observation over the river
- Water level positions are projected to the center line of the river
- Model input
- Choose number of time steps for the joint solution N_{t}
- Choose number of knots in the spline functions $x_{k n o t}$
- The size of N_{t} and $x_{k n o t}$ depends on the data
- The model allows evaluation of the water level at any given distance along the considered stretch of the river
- On the following results plot the water level is evaluated at the position of the in-situ station

Examples, Po river

- Consider a river segment of 300 km
- The temporal resolution of the data is 3 days (mean)
- East-West orientation, Optimal for satellite altimetry

Examples, Po river Pontelagoscuro gauge

- $N_{t}=1000$ equivalent to 3 days,$x_{k n o t}=7$

Examples, Po river Pontelagoscuro gauge

Examples, Po river Pontelagoscuro gauge

- Combined solution have added detail compared to the single missions
- Jason time series downloaded from DAHITI https://dahiti.dgfi.tum.de/en/ (adjusted in elevation to fit the gauge!)

Examples, Mississippi river Chester gauge

- consider a segment of 300 m
- The temporal resolution of the data is 9 days (mean)
- River orientation North-South -> less data

Examples, Lena river kusur gauge

- consider a segment of 300 m
- The temporal resolution of the data is 4 days (mean)
- Improved fit as more missions are added

Examples, Lena river kusur gauge

Summary

- Combining several mission in an integrated solutions can add more detail to the river level time series for smaller rivers
- The approach makes it possible to use missions with drifting orbits when deriving time series
- The method adds flexibility in the sense that the river level time series can be constructed at any location along the considered segment
- Important to have missions in both repeat and drifting orbit
- Future work: Integrate other missions; ICESat-2, Jason-2/3,...

Thank you for your attention :-)

