Surface and Upper Ocean Circulation from the combined use of in situ and space borne observations

S. Mulet, H. Etienne, S. Guinehut, E. Greiner, N. Verbrugge

Contact: smulet@groupcls.com

What is MULTIOBS?

- The Ocean Multi Observations TAC of CMEMS \succ
- Based on the combination of satellite & in-situ observations using \succ statistical methods.

OPERNICUS

ARINE

m N

CMEMS

OCEAN MULTI

OBSERVATIONS TAC

ontract 83-CMEMS TAC MOE Until 31 March 2021

SERVI

0

TROUTNOW 1M

What is MULTIOBS ?

- The Ocean Multi Observations TAC of CMEMS
- Main idea : take advantage of the strength of the two main components of the GOOS
 - in-situ observations: sparse but accurate and measurement at depth
 - satellite observations: higher resolution space/time but integrated/surface
- Variables (PHYS and BIO):

surface currents, 3D T/S/U/V, vertical velocities, SSS, SSD, MLD, pCO2, pH

What is MULTIOBS ?

- The Ocean Multi Observations TAC of CMEMS
- Main idea : take advantage of the strength of the two main components of the GOOS
 - in-situ observations: sparse but accurate and measurement at depth
 - satellite observations: higher resolution space/time but integrated/surface
- Variables (PHYS and BIO):

surface currents, 3D T/S/U/V, vertical velocities, SSS, SSD, MLD, pCO2, pH

- Products addressed in this presentation:
- Global 3D Ocean Temperature, Salinity and Geostrophic currents Weekly/Monthly, 1/4°, [0-1500m] on 24 levels, REP (1993-2018) & NRT (D-7)

A H

opernicus (7

What is MULTIOBS ?

- The Ocean Multi Observations TAC of CMEMS
- Main idea : take advantage of the strength of the two main components of the GOOS
 - in-situ observations: sparse but accurate and measurement at depth
 - satellite observations: higher resolution space/time but integrated/surface
- Variables (PHYS and BIO):

surface currents, 3D T/S/U/V, vertical velocities, SSS, SSD, MLD, pCO2, pH

- Products addressed in this presentation:
- Global 3D Ocean Temperature, Salinity and Geostrophic currents Weekly/Monthly, 1/4°, [0-1500m] on 24 levels, REP (1993-2018) & NRT (D-7)
- Global Geostrophic + Wind driven currents at 0 and 15 m 3h/Daily/Monthly, 1/4°, REP (1993-2018) & NRT (D-1)

A H

OBSERVATIONS TAG

ODERNICUS (MARCA

3D T/S/UVg – ARMOR3D

MULTIOBS_GLO_PHY_NRT_015_001 / MULTIOBS_GLO_PHY_REP_015_002

 Global 3D Ocean Temperature, Salinity and Geostrophic currents Weekly/Monthly, 1/4°, [0-1500m] on 24 levels, REP (1993-2018) & NRT (D-7)

Global Geostrophic + Wind driven currents at 0 and 15 m
 3h/Daily/Monthly, 1/4°, REP (1993-2018) & NRT (D-1)

OCEAN MULTI

3D T/S/UVg – ARMOR3D

CMEMS OCEAN MULTI BSERVATIONS T

MULTIOBS_GLO_PHY_NRT_015_001 / MULTIOBS_GLO_PHY_REP_015_002

→ 3D temperature, salinity, geostrophic velocities (Guinehut et al., 2012; Mulet et al., 2012)

- Based on a 3 steps method starting from a first guess T/S climatology (WOA)
- (1) Satellite data (SLA + SST + SSS) are projected onto the vertical using a **multiple linear regression** method
- (2) Combination between step 1 fields with T/S in situ profiles using an **optimal interpolation** method
- (3) Use of the **thermal wind equation** to combine the 3D T/S fields with surface geostrophic current fields to generate 3D geostrophic currents

 SSS

Guinehut S., A.-L. Dhomps, G. Larnicol et P.-Y. Le Traon (2012). High resolution 3-D temperature and salinity fields derived from in situ and satellite observations. Ocean Sci., 8(5):845–857. Mulet S., M.-H. Rio, A. Mignot, S. Guinehut et R. Morrow (2012). A new estimate of the global 3D geostrophic ocean circulation based on satellite data and in-situ measurements. Deep Sea Research Part II : Topical Studies in Oceanography, 77–80(0):70–81.

Validation with WM-ADCP observations

Coriolis data base

1h00 interpolated vgeo GOOP

V

1h00 interpolated ugeo GOOP

20150124

0.15 0.30

0.00

m/s

20150131

0.45 0.60

U

-0.60

-0.45 -0.30 -0.15

- Good agreement with independent ADCP data
- Limitation: slighly too barotropic below 1000m because the vertical gradients of the T/S fields are too smooth (thermal wind equation)

Validation with velocities from Argo drift at depth

MEAN of MULTIOBS versus YoMaHa, 1998-2017 in 1°x1° boxes (cm/s) – 1000m

Zonal

YoMaHa Lebedev et al., 2007

Meridional

-5 0 5 Meridional Mean of AR3D

Validation with velocities from Argo drift at depth

RMSD of MULTIOBS versus YoMaHa, 1998-2017 in 10°x10° boxes (cm/s) – 1000m

Application for biogeochemical study

Elephant Seal tracks (black) match very well with micronekton biomass in mesopelagic layer estimated from SEAPODYM model forced by MULTIOBS

 Global 3D Ocean Temperature, Salinity and Geostrophic currents Weekly/Monthly, 1/4°, [0-1500m] on 24 levels, REP (1993-2018) & NRT (D-7)

Global Geostrophic + Wind driven currents at 0 and 15 m
 3h/Daily/Monthly, 1/4°, REP (1993-2018) & NRT (D-1)

Copernicus/Globcurrent: new version on Dec 2019

 <u>The geostrophic</u> component is derived from altimeter multimission fields (DUACS / CMEMS SLA maps, **Taburet et al, 2019**) and the new **CNES-CLS18** Mean Dynamic Topography (Rio et al, in prep).

OCEAN MULTI

BSERVATIONS TA

 Wind driven component at the surface and 15m: from an empirical model forced by wind-stress fields: ERA5 upgraded version of the Rio, 2014 method.

M.-H. Rio, S. Mulet, and N. Picot (2014): Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophys. Res. Lett., 41, doi:10.1002/2014GL061773.

Modeling Wind-driven Currents (Ekman+Stokes) NEW MODEL

$$\vec{u}_{\text{buoy}} - \vec{u}_{\text{alti}} = \beta e^{i\theta} \vec{\tau}^{\alpha}$$

low pass filtered 30 hours

Old model (Rio et al, 2014):

 β and θ are estimated through least square fit by month and $4^{\circ}x4^{\circ}$ boxes

Wind stress from ERA5

% improvement from previous Copernicus/Globcurrent version

Version	SLA	MDT	Wind driven model	Wind forcing
Old	CMEMS/DUACS 14	CNES-CLS13	β and θ = f(lon,lat,month)	ERA Interim
New (Dec 2019)	CMEMS/DUACS 18	CNES-CLS18	β and θ = f(lat , MLD)	ERA5

- > Near the coast improvement thanks to CNES-CLS18 MDT.
- Global variability improvement thanks from ERA5 fields

Future work: Improved near-surface currents using SST

- → Based on the inversion of the heat conservation equation for the horizontal velocities
- ➔ Using the altimeter geostrophic velocities as background and prescribing source and sinks terms a priori values and associated errors, + successive SST fields (Piterbarg, 2009)
- ➔ Rio and Santoleri, 2018

OCEAN MULTI

83-CMEMS TAC

Upwelling (Med Sea) *Courtesy of Santoleri*

M.-H. Rio, and R. Santoleri, 2018: Improved global surface currents from the merging of altimetry and Sea Surface Temperature data, Remote Sensing of Environment, https://doi.org/10.1016/j.rse.2018.06.003.

New in

2020

Availability of the products throught CMEMS

on sécurisé | marine.copernicus.eu/services-portfolio/access-to-products/

OCEAN MULTI

BSERVATIONS TAG

til 31 March 202

> If you use these products: any feedbacks are very welcome and useful.

Validation with WM-ADCP observations Equatorial currents

Cravatte, S., E. Kestenare, F. Marin, P. Dutrieux and E. Firing, Subthermocline and Intermediate Zonal Currents in the Tropical Pacific Ocean: paths and vertical structure, accepted for publication in JPO, https://doi.org/10.1175/JPO-D-17-0043.1

0.00

-0.10

-0.05

0.05

0.10

Meridional velocity: mean difference

Meridional velocity: mean difference

YoMaHa measurements (upper), mean differences between surface MULTIOBS current (westward and northward components) and quadratic error in % (westward and northward components) in a 2°x2° bins.

0m

ERA5 too cyclonic at mid latitudes. \rightarrow Ekman bias.

15 m

Synergy SSH/SST: method based on Piterbarg 2009

Require the velocity field (u,v) to obey to the SST evolution equation

 $\frac{\partial SST}{\partial t} + u \frac{\partial SST}{\partial x} + v \frac{\partial SST}{\partial v} = F$ F = source and sink terms (solar input, net infrared radiation, latent and sensible heat fluxes)

Only along-gradient velocity information can be retrieved from the tracer distribution at subsequent times in strong gradient areas

 \rightarrow Piterbarg et al. 2009, Mercatini et al. 2010: Use a background velocity information (u_{bck} , v_{bck}) so that the satellite tracer information is used to obtain an optimized merged velocity (u_{opt} , v_{opt})

Input data sets

From 1998 to 2017:

- DUACS18 geostrophy (Reprocessed) daily map, 0.25 x0.25 spatial resolution
- REMSS MW SST (foundation SST≈10m depth) daily map, 0.25x0.25 spatial resolution from TMI, AMSR-E, AMSR2 and WindSat and GMI after 2014.
- SVP 15m drogued velocity
 SVP SST measurement
 6 hourly
 6 hourly

1998-2017 results

<u>% of improvement:</u> 100*(1-RMSU_{opt}/RMSU_{bck})² (RMS from SVP)

Degradation at high latitudes. In the ACC, the forcing error shows some local low values (less than 10^{-6} to 3.5 10-6 °C/s), but the error on the SST maps shows higher levels (see section 8 of Rio et al, 2018).

1998-2017 results

Increase energy at scales below:

Global:	100km	
Gulf Stream	100km	
Agulhas	100km	
Indian Ocean	150km	
Tropical Pacific	300 km	

Improved near-surface currents using SST

 $\mathrm{IMPROVE}_{(\mathrm{U},\mathrm{V})} = 100 \cdot \left[1 - \left(\frac{RMS^{OPT}_{(U,V)}}{RMS^{BCK}_{(U,V)}} \right)^2 \right]$

OCEAN MULTI

Future work:

DUACS18 + SST OSTIA

Validation against the SVP in-situ measured currents (% IMPROVEMENT, LOCAL STATISTICS, 20°x20° box)

- Almost everywhere: improvement over the background from altimetry (CMEMS/DUACS 18)
- Area of degradation, especially at high latitudes that need to be further investigate
- Improvement mainly for meridional component

Degradation from background

27

Perspectives: update error terms

• Run the Optimal reconstruction with new calibration of the input parameters re-comp($\omega t_{e} \sigma_{v}, h$) consistently with the background currents and SST data used in the reconstruction. At the moment, maps computed as in **Rio** and Santoleri 2018 are used.

Premiminary results show a better performance at high latitude and on zonal velocity

