

Arctic Sea Level Change in the GRACE-era

OSTST, Chicago October 2019

Carsten A. Ludwigsen, S. Abbas Khan, Stine K. Rose and Ole B. Andersen

DTU Space National Space Institute

Why the Arctic Ocean?

Arctic is the region in the world with most rapid climate change

Sea level is an important climate indicator and a proxy for many ongoing changes

- Freshwater influx
- Ocean heat uptake
- Land Ice change

Sea Level estimates are evident for Sea Ice Freeboard estimates.

Sea level in the Arctic

No or few continuous In-situ measurements

- Harsh conditions and high costs

Conventional altimetry has difficulties in the Arctic

- Few satellites covering north of 66 deg N
- Satellites challenged by floating sea ice

ERS-1/2, Envisat, CryoSat-2 provide a continuous 28 year Arctic sea level record (up to 81.5N).

ARGO JIOULS (OCLODER 4117 2019)

Multi-Mission Sea Level Trends

ARGO floats (October 4th 2019)

Most of the Arctic is permantly or seasonal covered with ice

b)

White = >50% SIC in September Light blue = >50% SIC in March

Red line = Max latitude for polar orbiting satellites

- Most of the Arctic is constantly or seasonal covered with ice
- Leads between ice floats can be used to measure SSH
- Return waveforms can look very similar.
 - 'Mixed' signal between sea ice ocean

b)

- Problem with melt ponds on top of sea ice that looks like ocean
- Scattering properties (Pulse Peakiness (LRM and SAR) and Stacked Standard Deviation (SAR only)) of waveform used to distinguish between surface types
 - SAR Altimetry has finer spatial resolution, thus more data from leads.

White = >50% SIC in September Light blue = >50% SIC in March

Red line = Max latitude for polar orbiting satellites

Trend estimates (2003-2015): Envisat (2003-2011) / CryoSat-2 (2011-2015)

	DTU	СРОМ	RADS
Modes used	SAR + LRM	SAR + LRM	Only LRM (1Hz)
Inverse Barometer	MOG2D	ECWMF	MOG2D
Wet Troposphere	Doris/GIM/Bent	ECWMF	ECMWF
Dry Troposphere	ECMWF	ECWMF	ECWMF
Sea State Bias	ALES+/RADS (only open water)	CLS	NOAA
Ionospheric correction	ECMWF	CNES	JPL GIM
Ocean Tide	FES2014	FES2004	GOT4.10
Solid/PoleTide	Cartwright/Wahr	Cartwright/Wahr	IERS

Trend estimates (2003-2015): Envisat (2003-2011) / CryoSat-2 (2011-2015)

	DTU	СРОМ	RADS
Modes used	SAR + LRM	SAR + LRM	Only LRM (1Hz)
Inverse Barometer	MOG2D	ECWMF	MOG2D
Wet Troposphere	Doris/GIM/Bent	ECWMF	ECMWF
Dry Troposphere	ECMWF	ECWMF	ECWMF
Sea State Bias	ALES+/RADS (only open water)	CLS	NOAA
Ionospheric correction	ECMWF	CNES	JPL GIM
Ocean Tide	FES2014	FES2004	GOT4.10
Solid/PoleTide	Cartwright/Wahr	Cartwright/Wahr	IERS

SSH = Ocean Mass + Steric Changes

(Altimetry = GRACE + ARGO)

Arctic challenge:

- Signal leakage mass loss from land is 10 to 1000 times larger (measured in equivalent water heights) than changes in the ocean
- In-Situ measurements in the Arctic are locally very sparse

SH-based EWH trend (03-15) [mm/yr]

Data from UDASHdatabase (Behrendt et al, 2017).

Sea level in the Arctic: Sea Level Budget – GRACE mascons 2003-2015

Combination	Altimetry solutions			
(Mass + Steric) R-coeff.	RADS	DTU	CPOM	
JPL + DTU	0.61	0.35	0.76	
JPL + ECCOv4	-0.16	0.40	-0.10	
GSFC + DTU	0.50	0.40	0.67	
GSFC + ECCOv4	-0.10	0.37	0.00	
CSR + DTU	0.49	0.19	0.69	
CSR + ECCOv4	-0.05	0.16	0.17	
OBPmean + DTU	0.54	0.32	0.74	
OBPmean + ECCOv4	-0.11	0.33	0.04	

Sea level in the Arctic: Tide-Gauges – VLM model (work in progress)

Sea level in the Arctic: Comparison with Tide-Gauges (work in progress)

Sea level in the Arctic: Comparison with Tide-Gauges (work in progress)

Conclusions

- A combination of JPL Mascons and the DTU Steric product has a fairly good agreement with the regional sea level trends from CPOM altimetry.
- The seasonal nature of the steric data and lack of consistent T/S data makes temporal correlation challenging
- The seasonal variability of the steric data is not represented in the altimetric data.
- Comparison with Tide-Gauges shows SLA-difference for both Altimetry and JPL+DTUSteric

Next steps

- More precise global VLM model and looking into the likely source of difference in SLA trends (GRACE, Steric, Altimetry, VLM model or Tide-Gauge)
- Comparing with ICESat-2 data (see also poster: SC4-017 ICESat-2 and CryoSat-2 in the Arctic Ocean for November 2018)

Extra slides

