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Motivation and Background

« Antenna calibration is critical for high-precision GNSS-
based precise orbit determination (POD).

— Simple Phase Center Offset (PCO), or 3-D vector to best-fit sphere is
one approach.

— Phase Center Variations (PCVs) as function of elevation and azimuth
proves to be better.
* In-flight calibration of Jason-series has benefited from yaw-
steering.

— Improves coverage and sampling, especially to decouple along-track
PCO from clock.

* In-flight calibration of Sentinel-6 A/B and SWOT poses
challenges, as both will be flying in fixed yaw only.

« Sentinel-3 A/B satellites already flying in fixed-yaw mode.

— Can be used to develop and test approaches for Sentinel-6 and
SWOT. 2



Estimation of Jason-3 PCO
Yaw-Steering vs Yaw-Fixed Phases

« Estimates shown as function of maximum daily yaw angle variations

Yaw-Steering case: 787 days included

« PCO well-determined in all 3 directions (provided max Ay > 60° in cross-track)

Yaw-Fixed case: 242 days included (AMR calibration days excluded)
» Along-track poorly observable; cross-track and radial components well

determined

Unexplained fly-forward/fly-backward discrepancy in radial direction (also
visible to lesser extent in cross-track direction in steered yaw)
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Estimation of Sentinel-3A PCO

(Sun-synchronous orbit, fixed-yaw attitude law)
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« PCO best determined in orbit transverse
and radial directions (based on scatter in

estimates and formal errors).

* Along-track component poorly determined.
« Consistent with observations made for

Jason-3 fixed-yaw attitude regime
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Overview of Antenna Calibrations Discussed

Calibration Description

type

Pre-launch estimate of phase center offset from mission project

PCo documents
Pre-launch calibration of GPS antennas.
PRELAUNCH | ° Jason-3: available

» Sentinel-3 A/B: apply pre-launch calibration of the Sentinel-6 RO-
POD antenna

Sum total of prelaunch and correction computed using in-flight data.

« Jason-3: 1310 days (Feb 13, 2016 to Sep 14., 2019)

INFLIGHT « Sentinel-3A: 1316 days (Feb 23, 2016 to Sep 30, 2019)

« Sentinel-3B: 517 days (May 1, 2018 to Sep 30 2019)

« Sentinel-3 A/B has along-track PCO correction constrained to 0




Mitigation of Unobservability by Means of Constraint
Sentinel-3A example

» In-Flight calibration of S3A antenna without constraints results with large (~300 mm)
estimated PCO in along-track direction.
Even when satellite is flying in fixed-yaw, calibration correction can be achieved.

Unconstrained correction to Correction to prelaunch calibration after
prelaunch calibration constraining PCO in along-track direction
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Antenna Calibration Corrections
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Measurement Model Improvement

Mean change in bin [%]

Mean change in bin [%]

— Improvement in resolution of phase ambiguities = better measurement modeling

— Overall tightening of the histograms closer to integer for solutions

 For all 3 satellites when using prelaunch calibration relative to PCO model.

» Additional improvement when using inflight vs. prelaunch: significantly larger for
JA3, equal for S3A, marginal for S3B
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POD Performance Assessment: Jason-3

RMS of Post-fit LC Residuals [mm] Median Radial Orbit Precision [mm]
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use of prelaunch or inflight calibration yields better fit
at all elevation angles 10 |
dramatic improvement of data fit for elevations > 50° 4
radial orbit precision gradually improves when using 5|
prelaunch and corrected prelaunch calibrations 5]
SLR residuals show orbit radial accuracy: .

» improves when using inflight calibration

« worsens when using prelaunch calibration
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POD Performance Assessment: Sentinel-3A

Lo RMS of Post-fit LC Residuals [mm]
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Improved performance seen for all 3 metrics:
« when using prelaunch calibration relative to
PCO model
« when applying corrections estimated from
in-flight data to prelaunch calibration
Similar to JA3, impact on data fit of using
prelaunch over PCO increases for elev. > 50°
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POD Performance Assessment: Sentinel-3B
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Impact of in-flight correction on orbit
accuracy is largest at higher off-nadir
angles (lower elevation angles).

S3B orbit precision better when
applying S3A inflight calibration than

when applying S3B inflight calibration.
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Conclusion

« Recommend use of full antenna calibration (PCO+PCV) over use
of PCO vector only

— Demonstrated benefit of using prelaunch calibration over simple
PCO model,

— Shown added benefit of applying corrections estimated from in-
flight data to prelaunch calibration

« Challenges associated with poor observability of PCO vector in
satellite’s direction of motion when flying in fixed-yaw can be mitigated
in 2 ways:

» use prelaunch antenna calibration,

« constrain along-track component of PCO to prelaunch
calibration value when estimating correction to a priori antenna
calibration
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Yaw Flip Events
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Jason-3 Formal Errors
Yaw-Fixed vs Yaw Steering

Formal Errors of Phase Center Offset Estimates [mm]

Radial Cross-Track Along-Track
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Impact of Ambiguity Resolution

on PCO Determination
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* Bias fixing reduces the scatter in the PCO estimates, esp. along-track
» Formal errors are reduced in all 3 directions after ambiguities are resolved.

Estimates of Phase Center Offset in Along-Track Direction during Steered Yaw Phases
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Before 12.7 0.5 -0.23
bias fixing 0.08 0.12 0.04
After 15.6 -1.2 0.8
bias fixing 0.03 0.03 0.03




Sensitivity of PCO Determination
to Dynamic Parameterization

30-hour-long solutions, centered on 12PM, dynamic orbits , 0° elevation cut-off
Various dynamics parameterizations tested
v/ = estimate as good as baseline ; X = estimate degraded relative to baseline

Along-track (L)

Cross-track (C)

Radial (H)

drag + 1-cpr along H/L

JPL’s operational strategy (baseline)
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Sensitivity of PCO Determination
to A Priori Antenna Calibration

when:

« Using prelaunch calibration over PCO calibration
» Using post-launch estimated correction to prelaunch calibration

Overall reduction in scatter for 3 components for different attitude regimes

Conspicuous reduction of (unexplained) bias between fly-forward and fly-

backward estimates of the PCO; e.g. in the radial direction when s/c flying in

fixed-yaw

Estimates of Radial Component of Phase Center Offset in Fixed Yaw Mode [mm]
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Jason-3 attitude sequence
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Jason-3 SLR Residuals
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