An analytical method to propagate errors in the Altimeter system

P. Exertier, P. Bonnefond, N.D. Luong OMP/GRGS, OP/SYRTE, France, NUCE University, Vietnam

OSTST Meeting, Chicago, 21-25 October 2019

Introduction

=> Analysing the errors is something like understanding the transfer of errors from their origin(s) to the result (e.g. the altitude of the sea surface above a reference)

• Numerical methods are extensively used to determine a solution which is constrained by different models (or approaches)

But it is necessary to evaluate the quality, from external sources, etc. => characterize the errors in time&space

 Analytical methods have the property of providing direct relations (equations) between input parameters (ε) and the solution; e.g. :

orbit $(\lambda, \phi, t) = \text{fcnt}(\lambda, \phi, \varepsilon(\text{geophysics, satellite, etc.}, t))$

They have been used to characterize the Radial Orbit Error(s), using the approach of Kaula, Rosborough, etc. (see *Kaula, Balmino, Colombo, Engelis, Rosborough, Scharroo, Schrama, Tapley, Visser, and Wagner*.

=> radial orbit errors coming from the gravity field essentially, in view of understanding the limits of the altimetry system (see e.g. the so-called Geographically Correlated Errors)

• Here, we develop an analytical approach which is dedicated to the transfer of errors **from the orbit** to geodetic products: the sea surface topography is a first target, before studying the stability of tracking station coordinates.

^{=&}gt; Inversely, we are not able to study the impact, on the orbit, of different error sources or approaches.

Method

- In addition to the 6 classical keplerian elements (aei...), as orbital parameters, we use a set of spherical coordinates (r'φ'λ', strictly dedicated to circular motion) in a privileged frame:
 - => the precessing mean orbital plane which is oriented by (i) and $\Omega(t)$ given along the equator

 $\begin{aligned} d & aei / dt = L(aei) \delta U / \delta aie & => 6 \text{ equations} & => \text{Kaula solution} \\ d^2 r' \phi' \lambda' / dt^2 &= G(r' \phi' \lambda' ; r. \phi. \lambda.) \delta U / \delta r' \phi' \lambda' & => 3 \text{ equations of the second order in } t => r' \phi' \lambda' \text{ solution} \\ T &= \frac{1}{2} \left(\dot{r'}^2 + (r' \dot{\varphi}' - r' \dot{\Omega} \sin i \cos \lambda')^2 + (r' \cos \varphi' (\dot{\lambda}' - \dot{\Omega} \cos i) - r' \sin \varphi' \dot{\Omega} \sin i \sin \lambda')^2 \right) & \text{orbital plane} \\ \text{with } : L &= T + U(r', \varphi', \lambda'; i, \Omega) \\ \begin{cases} r' &= r'_0 + \varepsilon r'_1 \\ \varphi' &= 0 + \varepsilon \varphi'_1 \\ \lambda' &= n(t - t_0) + \varepsilon \lambda'_1 \end{cases} & \begin{cases} r'_1 &= \sum_{k=1}^L \frac{r_1^{ck} \cos \psi_k + r_1^{sk} \sin \psi_k}{\dot{\psi}_k} \\ \varphi'_1 &= \sum_{k=1}^L \frac{\varphi_1^{ck} \cos \psi_k + \varphi_1^{sk} \sin \psi_k}{\dot{\psi}_k} \\ \lambda'_1 &= \sum_{k=1}^L \frac{\lambda_1^{ck} \cos \psi_k + \lambda_1^{sk} \sin \psi_k}{\dot{\psi}_k} \end{cases} \end{aligned}$

Method-II

• the gravity field of the solid earth, and its time variable components

$$U_{n,m} = \frac{GM}{r} (\frac{ae}{r})^n P_{n,m}(\sin\phi) (C_{n,m}\cos m\lambda + S_{n,m}\sin\lambda)$$

where: $(C/S)_{n,m} = (C/S)_0 + (t - t_{ref})(C/S)_t + (C/S)_{annual} + (C/S)_{semi-annual}$

• the ocean tides (11 waves)

$$U_{f,n,m}^{+-} = \sum_{f} \sum_{+-} \frac{4\pi Gae\rho}{g} \left(\frac{ae}{r}\right)^n \left(\frac{2n+1}{1+k'_n}\right) P_{n,m}(\sin\phi) (C_{f,n,m}^{+-}\cos m\lambda + S_{f,n,m}^{+-}\sin\lambda)$$

• the solar radiation pressure considered as a field (U_{SRP})

 $U_{SRP} = -\sigma \ r \ P_{1,0}(\cos \Psi)$ $\cos \Psi = \sin \varphi \ \sin \varphi_{\odot} + \cos \varphi \ \cos \varphi_{\odot} \ \cos(\alpha_{\odot} - \lambda)$

with: $\sigma = \frac{S}{m}.Cr.C_{sol}$

and r is the Sun-Earth direction $(\varphi_{\odot}, \alpha_{\odot})$, and from which $\partial U_{SRP}/\partial r$ leads to the well-known acceleration.

The analytical solution, here, is used to propagate (in time):

δ(Cnm,Snm, Cr, ...)

instead of

(Cnm,Snm, Cr, ...)

The "solution" directly gives orbit errors $\delta r' \phi' \lambda'$ (t) (equivalent to δRNT_{sat})

Orbit dynamics

- One of the important issue is to characterize the "errors" δ(Cnm,Snm, Cr, ...) used here, notably:
 - $\delta(C_nm, S_nm)$ for the gravity field
 - δ(C_fnm, S_fnm /ocean wave f)
 - $\delta(Cr, S/m)$ for the Solar Radiation Pressure
- Gravity field model (constant and variable parts)
 - Variance/Covariance matrix
 - Differences between 2 models
 - Variable part of the geopotential (essentially annual and semi-annual terms)
 - Influence of the model on precise orbits of altimetry satellites; see for recent papers: *Couhert, Rudenko, Zelensky*
 - X-over analysis is used since years (see: Rosborough, Engelis, Schrama)

Orbit dynamics-II

 δ S/m / (S/m) : 0.007 with [Ω –Sun-longitude] (t)

Orbit dynamics-III

Ocean tide model (e.g. FES and GOT):

=> only part of discussions about orbit errors (see, however, the work of *Bettadpur & Eanes*)

	M2
Amplitude	~100 cm
Accuracy < 1995	2.87 cm
GOT.99v2	1.47
CSR 4.0	1.64
FES 95	1.65
FES2012	1.30 cm
# FES2012 - 2014	< 1%

=> tide deep-ocean tide gaude \Rightarrow GRACE *Ray, Lyard: 2019, 2014*

"errors" in water height => ± 8 mm

Sa,Ssa,Mf Q,O,P,S,K : diurnal N,M,S,K : semi-diurnal

Models and tests

Model 1

eigen-gl04s1 : variance of SH coefficients, d/o 45

Radial orbit error (mm):

Total: mean:	0.0 ± 0.42	mean of I	RMS: <mark>8.1</mark>
X-over: mean:	0.0 ± 0.2		1.0
Asc/Desc: mean:	0.0/0.0 ± 0.4		8.0

Model 2

eigen-gl04s1 : variance of SH coefficients, d/o 45 C/S11: 1.3/1.5 C10: 1.9 (annual, in mm) SRP: δ S/m /(S/m) + δ Cr/Cr = 0.00694

Radial orbit error (mm):

Total: mean:	0.0 ± 0.43	mean of F	RMS: <mark>8.7</mark>
X-over: mean:	-0.6 ± 3.9		1.6
Asc/Desc: mean:	-0.3/+0.3 ± 2.0		8.3

Model 1

eigen-gl04s1 : variance of coefficients, d/o 45

Radial orbit error (mm):

Total: mean:	0.0 ± 0.42	mean of I	RMS: <mark>8.1</mark>
X-over: mean:	0.0 ± 0.2	••• •••	1.0
Asc/Desc: mean:	$0.0/0.0 \pm 0.4$	••• •••	8.0

Model 2

eigen-gl04s1 : variance of coefficients, d/o 45 C/S11: 1.3/1.5 C10: 1.9 (annual, in mm) SRP: δ S/m /(S/m) + δ Cr/Cr = 0.00694

Radial orbit error (mm):

Total: mean:	0.0 ± 0.43	mean of F	RMS: <mark>8.7</mark>
X-over: mean:	-0.6 ± 3.9	••• •••	1.6
Asc/Desc: mean:	-0.3/+0.3 ± 2.0		8.3

Model 2 (X-over, mm)

Models and tests-II

Model 3

eigen-gl04s1 : variance of SH coefficients, d/o 45 ocean tides: 11 waves (o/ 0, 1, 2 & d/ 30)

Radial orbit error (mm):

Total: mean:	0.0 ± 0.1	mean of F	RMS: <mark>5.0</mark>
X-over: mean:	-0.7 ± 9.0		2.6
Asc/Desc: mean:	-0.3/+0.3 ± 4.8		2.4

Model 4

grgs-RL02_MF : time var. coefficients, d/o 45 C/S11: 1.3/1.5 C10: 1.9 (annual, in mm) SRP: δ S/m /(S/m) + δ Cr/Cr = 0.00694

Radial orbit error (mm):

Total: mean:	0.0 ± 1.2	mean of I	RMS: <mark>6.7</mark>
X-over: mean:	-0.6 ± 4.0		1.7
Asc/Desc: mean:	-0.3/+0.3 ± 2.4		6.3

Model 3

eigen-gl04s1 : variance of SH coefficients, d/o 45 ocean tides: 11 waves (o/ 0, 1, 2 & d/ 30)

Radial orbit error (mm):

Total: mean:	0.0 ± 0.1	mean of r	ms: <mark>5.0</mark>
X-over: mean:	-0.7 ± 9.0		2.6
Asc/Desc: mean:	-0.3/+0.3 ± 4.8	:	2.4

Model 4

grgs-RL02_MF : time var. coefficients, d/o 45 C/S11: 1.3/1.5 C10: 1.9 (annual, in mm) SRP: δ S/m /(S/m) + δ Cr/Cr = 0.00694

Radial orbit error (mm):

Total: mean:	0.0 ± 1.2	mean of r	ms: <mark>6.7</mark>
X-over: mean:	-0.6 ± 4.0		1.7
Asc/Desc: mean:	-0.3/+0.3 ± 2.4	:	6.3

Model 4 (X-over, mm)

Radial orbit errors at CAL/VAL sites

Model 2

eigen-gl04s1 : variance of SH coefficients, d/o 45 C/S11: 1.3/1.5 C10: 1.9 (annual, in mm) SRP: δ S/m /(S/m) + δ Cr/Cr = 0.00694

Corsica (repeat arc, mm)		Tasmania	a (id.)	
	mean	RMS	mean	RMS
Desc. arc:	-0.70	11.7	0.46	11.9
Asc. arc:	-0.10	11.8	0.57	12.3

CAL/VAL sites-II

50

Model 4

grgs-RL02_MF : time var. coefficients, d/o 45 C/S11: 1.3/1.5 C10: 1.9 (annual, in mm) SRP: δ S/m /(S/m) + δ Cr/Cr = 0.00694

Corsica (repeat arc, mm)		Tasmania	a (id.)	
	mean	RMS	mean	RMS
Desc. arc:	3.10	8.8	-2.30	8.8
Asc. arc:	2.50	8.9	-2.84	8.1

Summary (theory)

The present analytical approach is used to study the orbit errors due to several and potential origines:

- Gravity field: constant and time variable parts
- Ocean tide model: 11 waves
- Solar Radiation Pressure

After validating the firts order analytical solution (spherical coordinates in the mean orbital plane) at 10⁻³, errors in the "geodynamical" parameters are introduced in the solution equations in order to propagate the signals.

Errors in the "geodynamical" parameters are defined following different techniques:

• Variance of SH coefficients (with white noise)

<= geopotential

- Part (10%) of the time variable geopotential
- Differences between existing models
- Global analysis of coefficient accuracy
- Empirical results

<= tide model <= solar radiation pressure

Conclusion (results)

The present analytical approach is applied in 4 different situations:

- constant errors (variance of the geopotential)
- a slowly changing SPR (draconitic period)
- a part of the annual and semi-annual changes (hydrology) of the TVG field
- < 1% error in tide waves (global ocean tide model)

Global radial orbit error is determined at the level of 5 to 8 mm RMS (depending on the "model") At CAL/VAL sites, the orbit errors (repeat arcs) are of 11 mm RMS with constant part of 1 to 3 mm

The regional part of Sea Surface Height errors coming from the orbit errors is of 1 to 8 mm Over a 3 years period, the radial drift rate is reaching 0.3 mm/yr (depending on the "model")

A global test will be performed in order to cumulate all the different signals presented here: TVG, ocean tides and SRP

The propagation of orbit errors will be applied to study the stability of tracking station coordinates.

