Ocean Surface Topography Science Team Meeting (OSTST)

21-25 October, 2019 Chicago, Illinois

Altimetry satellites SLR residuals analysis

Flavien Mercier John Moyard Alexandre Couhert

CNES DSO/DV/OR

Cones

🗲 EUMETSAT

SLR analyses, objectives

- a 'core network' (8 stations) is currently used for orbit performance verification
 - 7090 Yarragadee
 - 7105 Washington
 - 7119 Halekala
 - 7501 Hartebeesthoek
 - 7810 Zimmerwald
 - 7839 Graz
 - 7840 Herstmonceux
 - 7941 Matera
- SLR high elevation residuals (now below 1 cm) rms are sensitive to previously ignored station biases
- difficulties with stations showing significant biases (example 8834 Wettzell)
- very few high elevation measurements for one cycle arc

analysis of the complete Network

- measurement quality
- biases ...

how to improve the SLR residuals processing for LEO orbits validation

2) © cnes

SLR analyses, retroreflector models

Satellites used : Cryosat 2, Jason 3, Sentinel 3A, Sentinel 3B

SLR array precise models (modelling of all corner cubes) - geometrical descriptions from the ILRS documentation

SLR analyses, preprocessing

Specific preprocessing for this study

Validated pass :

nb meas. > 10 bias < 0.2 m variation < 0.2 m all residuals < 0.1 m

No other elimination

Elimination of less than 1% of the passes

ITRF 2014 stations coordinates and POE-F geocentre motion model

Global performance (dispersion of the measurements)

Stations selection : quantiles 0.1 - 0.9 (corresponds to ~+-1.25 sigma interval)

Stations with more than 5000 measurements on Jason 3, from 2016-01 to 2019-07

1873, 1884, 7819, 7827 removed from the analysis ---> 18 stations remaining

Stations performance (noise, nb. measurements)

Good stations : noise ~2.5 mm

1890,1893,7124,7811 removed (important noise, or few measurements)

High elevation residuals, all satellites

High elevation residuals, all satellites

High elevation residuals, all satellites

Bias and sigma, high elevation residuals (>70 deg.)

All stations have similar sigma (except 7237)

All satellites have similar biases on each station

Some core network stations have important biases (7119)

How to handle this situation ?

Origin?

cnes

Network

SLR NETWORK

High elevation observed biases

The station biases are common to all satellites

may include : station height modelling errors

Values for the high elevation processing biases (* : core network) using Jason3, Cryosat2, Sentinel3A :

	bias	(mm)
L7090	2.0	*
L7105	3.0	*
L7110	13.0	
L7119	12.0	*
L7237	-34.0	
L7403	-2.0	
L7501	5.0	*
L7810	-6.0	*
L7825	-1.0	
L7839	0.0	*
L7840	0.0	*
L7841	-14.0	
L7941	-7.0	*
L8834	-20.0	

Global results

Heigh elevation residuals (>70 degrees)

- 14 stations network, biases correction

Radial performance estimation (mm)

		14 stations biases corr.
jason3	(cnes)	8.5
jason3	(jpl)	7.9
cryos2		8.2
sent3a		6.5
sent3b		6.8

Some questions

- bias changes (station configuration, drifts ?) ILRS logs information

 bias variations as function of elevation to be investigated

- special characteristics of Sentinel3 and Cryosat SLR retroreflectors

Bias change example : Wettzell

· · · cnes · · · ·

Elevation dependency, Yarragadee

bias signatures around 55-60 deg (Cryosat and Sentinel)

SLR array characteristics around 60 deg. elevation

Elevation dependency, Wettzell

Elevation dependency, Zimmerwald

Similar results as Yarragadee

orbit performancesignatures around 55-60 deg.

Elevation dependent bias (from +3 mm to -6 mm) - vertical coordinate error ?

Elevation dependency, Graz

Similar results as Yarragadee

- orbit performance

- signatures around 55-60 deg.

Elevation dependent bias (see Zimmerwald)

Conclusion

Extension of the current 8 stations core network : 14 stations

The high elevation biaises are not negligible compared to the current orbit performances

Cryosat2 and Sentinel3 SLR array characteristics/modelling? (signatures at 55-60 deg.)

Some mean residuals function of elevation, annual variations

- origin to be investigated
- effect on the SLR residuals rms (at all elevations)?

Efficient radial performance estimation using these biaises (7.9 mm rms on Jason JPL orbits)

	> 70 deg		elev.	var.
7090	2.0	*		
7105	3.0	*	+5	
7110	13.0			
7119	12.0	*		
7237	-34.0		-25	
7403	-2.0		-10	
7501	5.0	*		
7810	-6.0	*	-10	
7825	-1.0		-5	
7839	0.0	*	-5	
7840	0.0	*		
7841	-14.0		-10	
7941	-10.0	*		
8834	-20.0			
	\ (F	efore 20	19-07-04)	

Thank you

Statistics with JPL orbit

Statistics with JPL orbit

Yarragadee, jpl orbits

