Copernicus POD Service – Model Updates and Validation of Sentinel-3 Orbit Determination

OSTST 2019, Chicago, IL October 21-25, 2019

Heike Peter⁽¹⁾, Emilio J.Calero⁽²⁾, Jaime Fernández⁽²⁾ + GMV team Pierre Féménias⁽³⁾

⁽¹⁾PosiTim UG, Germany, ⁽²⁾GMV AD, Spain, ⁽³⁾ESA/ESRIN, Italy

Copernicus POD Service

verioos 🔞

Copernicus POD Service

Sentinel-1 Sentinel		el-2 Sentinel-3	
Mission	Category	Orbit Accuracy (RMS)	
	NRT (predicted)	1 m (2D)	
S-1	NRT	10 cm (2D)	
	NTC	5 cm (3D)	
5.2	NRT (predicted)	3 m (2D)	
5-2	NRT	1 m (3D)	
	NRT (S3PODIPF)	10 cm radial (target of 8 cm)	
S-3	STC	4 cm radial (target of 3 cm)	
	NTC	3 cm radial (target of 2 cm)	

Official orbit provider for S-3 is CNES, Copernicus POD Service delivers backup solutions.

Regular Service Reviews – RSR#14 Feb – May 2019

AING AIUB CNES CPOF DLR ESOC EUMB EUM GRG TUDG TUM CPOD COMB

Regular Service Reviews

Operational Sentinel-3 POD settings

- NAPEOS (NAvigation Package for Earth Orbiting Satellites)
- IERS2010 conventions
- IGS Final orbits and clocks (30 s), igs14.atx
- 10 s S-3 GPS data, 1° x 1° PCVs, ambiguity-float solution
- 32 h arc; 19:00 (day-1) 03:00 (day+1)
- EIGEN.GRGS.RL03 gravity field (120 x 120), time-variable coefficients (50 x 50)
- EOT11a ocean tides (50 x 50)
- Atmosphere gravity product from massloading.net, atmosphere tides (Ray-Ponte, 2003)
- Satellite macro model for non-gravitational force modelling
- Atmosphere model MSISE90 + HWM93, 15 drag coefficients per arc
- Earth albedo and IR radiation
- One solar radiation pressure coefficient per arc
- Empirical CPR (cycle-per-revolution) parameters: three sets/arc
 - along-track sine + cosine, cross-track sine + cosine

Operational Sentinel-3 POD settings

- NAPEOS (NAvigation Package for Earth Orbiting Satellites)
- IERS2010 conventions
- IGS Final orbits and clocks (30 s), igs14.atx
- 10 s S-3 GPS data, 1° x 1° PCVs, ambiguity-float solution
- 32 h arc; 19:00 (day-1) 03:00 (day+1)
- EIGEN.GRGS.RL03 gravity field (120 x 120), time-variable coefficients (50 x 50)
- EOT11a ocean tides (50 x 50)
- Atmosphere gravity product from massloading.net, atmosphere tides (Ray-Ponte, 2003)
- Satellite macro model for non-gravitational force modelling
- Atmosphere model MSISE90 + HWM93, 15 drag coefficients per arc
- Earth albedo and IR radiation
- One solar radiation pressure coefficient per arc
- Empirical CPR (cycle-per-revolution) parameters: three sets/arc
 - along-track sine + cosine, cross-track sine + cosine

Planned / Future Sentinel-3 POD settings

- NAPEOS (NAvigation Package for Earth Orbiting Satellites)
- IERS2010 conventions
- GRGS Final orbits and clocks (30 s), igs14.atx
- 10 s S-3 GPS data, 1° x 1° PCVs, ambiguity-fixed solution
- 32 h arc; 19:00 (day-1) 03:00 (day+1)
- EIGEN.GRGS.RL04 gravity field (120 x 120), time-variable coefficients (50 x 50)
- FES2014 ocean tides (50 x 50)
- GFZ AOD L1B, atmosphere tides from GFZ AOD product
- Satellite macro model for non-gravitational force modelling
- Atmosphere model MSISE00 + HWM14, 15 drag coefficients per arc
- Earth albedo and IR radiation

POSITIN

- One solar radiation pressure coefficient per arc
- Empirical CPR (cycle-per-revolution) parameters: three sets/arc
 - along-track sine + cosine, cross-track sine + cosine

Stepwise validation of model updates

gn∕"

Update of gravity field RL03 => RL04

- **RL04:** Time-variable gravity field coefficients are based on data until end of 2016, afterwards the coefficients are extrapolated
- First available model was limited to degree and order 90

Mean carrier pl	hase RMS (mm)		Mean o	verlaps (4 h)	(mm)		SLR va	lidation (mm)
	Sentinel-3A	SENTINEL-3A	radial	along-track	cross-track	3D	SENTINEL-3A	Mean	RMS
RL03/120	6.17	RL03/120	3.42	9.58	4.25	11.20	RL03/120	3.5	13.8
RL04/90	6.07	RL04/90	2.95	7.70	3.75	9.20	RL04/90	2.6	13.0
Time series up Mean carrier pl	to end of 2017: hase RMS (mm)		Mean o	verlaps (4 h)	(mm)		SLR va	lidation (mm)
	Sentinel-3A	SENTINEL-3A	radial	along-track	cross-track	3D	SENTINEL-3A	Mean	RMS
RL03/120	6.21	RL03/120	3.66	10.87	5.98	13.15	RL03/120	3.7	13.4
RL04/90	6.18	RL04/90	3.31	8.77	5.00	10.80	RL04/90	2.9	12.8

=> Clear improvement of the results

Time series up to end of 2016:

Different atmosphere gravity field products

 $\leq old$

- 1. atm_grav20 from GSFC/NASA, 20x20, 6h resolution
- 2. atm_geosfpit from massloading .net, 64x64, 3h resolution
- 3. GFZ AOD L1B product, 180x180, 3h resolution (max. 100x100 used) <= new

Mean carrier phase RMS (mm)

	S-1A	S-1B	S-2A	S-2B	S-3A	S-3B
1	6.02	5.86	6.19	6.16	6.40	6.12
2	6.04	5.88	6.23	6.19	6.43	6.15
3	6.00	5.85	6.18	6.14	6.39	6.11

Mean midnight overlaps (mm) – only one point

SENTINEL-3A	radial	along-track	cross-track	3 D
1	14.67	20.95	15.65	33.82
2	14.51	21.74	15.94	34.59
3	15.20	21.25	13.23	33.60

SENTINEL-3B	radial	along-track	cross-track	3D
1	12.26	22.86	10.79	31.11
2	12.33	23.42	11.12	32.08
3	12.75	24.36	9.17	32.72

 \Rightarrow No clear improvement but results are on the same level \Rightarrow Atmosphere tides still have to be adopted

August 2018 is processed for all six satellites Atmosphere tides => Ray-Ponte, 2003

Comparison to S-3 CNES orbits

S-3 CNES orbit solutions are based on POE-F standards since beginning of Nov 2018. This includes the EIGEN.GRGS RL04 gravity field model and the GFZ AOD 1B product.

Orbit comparison for Dec 2018 (mm):

S-3A	radial	along-track	cross-track	3D
RL03_agra	7.24	14.45	10.74	19.45
RL03_AOD	7.28	14.44	10.39	19.25
RL04_agra	6.28	12.47	9.83	17.12
RL04_AOD	6.12	12.09	9.42	16.54

S-3B	radial	along-track	cross-track	3 D
RL03_agra	5.57	13.16	8.48	16.66
RL03_AOD	5.63	13.20	8.19	16.56
RL04_agra	4.32	10.82	7.38	13.84
RL04_AOD	4.21	10.59	6.93	13.38

=> Consistency with CNES orbits improved

Ambiguity-fixed vs. ambiguity-float solution

- Single-receiver ambiguity-fixing is possible since the half-cycle ambiguities have been corrected in L0 => RINEX file generation.
- GRGS Final GPS orbit and clock solutions together with widelane satellite biases are used. (see poster "Single-receiver ambiguity resolution for Sentinel-3 precise orbit determination at the Copernicus POD Service", Calero et al.)
- REPR solutions are ambiguity-float solutions based on reprocessed GPS orbits and clocks.

Sentinel-3 POD settings

- NAPEOS (NAvigation Package for Earth Orbiting Satellites)
- IERS2010 conventions
- ???? Final orbits and clocks (30 s), igs14.atx
- 10 s S-3 GPS data, 1° x 1° PCVs, ambiguity-fixed solution
- 32 h arc; 19:00 (day-1) 03:00 (day+1)
- EIGEN.GRGS.RL04 gravity field (120 x 120), time-variable coefficients (50 x 50)
- FES2014 ocean tides (50 x 50)
- GFZ AOD L1B, atmosphere tides from GFZ AOD product
- Satellite macro model for non-gravitational force modelling
- Atmosphere model MSISE00 + HWM14, 15 drag coefficients per arc
- Earth albedo and IR radiation
- One solar radiation pressure coefficient per arc
- Empirical CPR (cycle-per-revolution) parameters: three sets/arc
 - along-track sine + cosine, cross-track sine + cosine

Updates and validation still to be done

CPOF - ambiguity-fixed solutions with updated models

veripos 💮

Positim

gm/

- 27 Jan 18 May 2019 ٠
- Comparison of **CPOD**, ٠ CNES, and CPOF solution against QWG combined orbit solution
- SLR validation (mm) ullet

SENTINEL-3A	Mean	RMS
CPOD	6.0	14.9
CNES	4.6	11.3
CPOF	4.9	11.5

SENTINEL-3B	Mean	RMS
CPOD	5.8	14.6
CNES	4.4	10.5
CPOF	5.1	10.4

Geographically distributed radial mean differences

Summary

- The Copernicus POD Service is responsible for Sentinel-1, -2, and -3 POD processing.
- POD setup has to be regularly reviewed to stay up-to-date.
- Step-wise validation of several model updates has successfully been performed for all three missions.
- Implementation of FES2014 ocean tide model and GFZ AOD atmosphere tidal contribution is still pending.
- Different GPS bias products for the single-receiver ambiguity resolution are still tested.
- Copernicus POD QWG has to approve the new POD setup for all three Sentinel missions before the switch can be done.
- Reprocessing of entire missions can be done.

Thank you for your attention!

Acknowledgements:

The Copernicus POD Service is financed under ESA contract no. 4000108273/13/1-NB, which is gratefully acknowledged. The work performed in the frame of this contract is carried out with funding by the European Union. The views expressed herein can in no way be taken to reflect the official opinion of either the European Union or the European Space Agency.

