SWOT Status: Prelaunch Ocean Campaign

Lee-Lueng Fu Jinbo Wang Parag Vaze

Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA, USA

> Rosemary Morrow, LEGOS, Toulsouse, France Thierry Lafon, CNES, Toulouse, France

> > 2019 OSTST Meeting October 21, 2019 Chicago, USA

Summary Project Status

- All Flight hardware completed and now in progressive levels of I&T
 - Nadir Payload: Nearly complete at JPL
 - » AMR, GPSP, LRA, DORIS, X-band all integrated; Nadir Altimeter in next month
 - KaRIn Module: Nearly complete at JPL
 - » Testing shows good performance results, meeting requirements
 - Deployable Mast/Antenna: Hardware completed and in system I&T (JPL)
 - Next year dedicated to final payload I&T and delivery for S/C I&T (France)
 - CNES S/C Bus I&T about to start and expected to complete (Apr 2020)
- Launch vehicle (SpaceX-Falcon9): Nominal development progress
- JPL/CNES Ground system development continuing and preparing for integrated testing
- Algorithm and Cal/Val development progressing to support launch
- Developed and now implementing design to significantly improve the science data product latency (goal <3 days)
- Overall project is overcoming hurdles of implementing a challenging mission and nearing final stages of development in 2021

Technical Discreet. The technical data in this document is controlled under the U.S. Export Regulations; release to foreign persons may require an export authorization.

The most important task after launch is to evaluate the measurement performance for studying ocean circulation

Meeting the challenges of CalVal with an in-situ observing system

A strawman design for post-launch CalVal (pending on the findings from the pre-launch campaign):

1.

Geodetic component: An along-track array of GPS buoys for SSH validation
The minimum length of the GPS array needs to be ~ 120 km, according to a modeling study of the long-wavelength calval by the SWOT nadir altimeter.

2. Oceanographic component: A two-dimensional array of hydrographic sensors (gliders, moored wire walkers/CTDs, etc.) for oceanographic understanding and validation.

Experiment Objectives

- Test the closure of determining SSH with GPS buoy, CTD mooring, and BPR.
- Test the sampling of the scales of SSH variability not resolved by conventional altimeters such as Sentinel 3A (S3A).
- Evaluate the vertical scale of the upper ocean circulation that can be determined by SSH at the SWOT scales for different frequency bands.
- Evaluate the roles of bottom pressure in SWOT SSH signals.
- Assess the information content of the in-situ observations:
 - Continuation of the S3A wavenumber spectrum to the SWOT regime
 - Evaluate the reconstruction of the upper ocean circulation
- Provide information for the design of the post-launch in-situ observing system.

SIO R/V Sproul – a 125 foot ship Sept 1-8, 2019

SIO hybrid mooring- Wire-walker upper 500 m, 7 microcats below

SIO hybrid mooring- Wire-walker upper 500 m, 7 microcats below

SIO hybrid mooring- Wire-walker upper 500 m, 7 microcats below

Upper 2000 m vs full depth dynamic height

Spectral analysis of the SIO hybrid mooring data

- The spectrum of the dynamic height of the upper 500m (blue) and full depth (orange).
 Degree of freedom=10.
- Red line: the coherence between 500m and full-depth dynamic height. The y-axis is on the right.

- The spectrum of the dynamic height of the upper 2000m (blue) and full depth (orange).
- Red line: the coherence between 2000m and full-depth dynamic height. The y-axis is on the right.

Sample NOAA Prawler Data (T)148 profiles

Height from GPS (cm)

