

New CNES-CLS18 Mean Dynamic Topography of the global ocean from altimetry, gravity and in-situ data

<u>S. Mulet</u>¹, M-H Rio ^{1,2}, H. Etienne ¹, N. Picot ³, G. Dibarboure ³ ¹CLS, ²now at ESA, ³CNES

Contact: smulet@groupcls.com

	W/bat is por		
	MDT CNES-CLS13	MDT CNES-CLS18	
MSS	CNES-CLS11 (Schaeffer et al, 2012)	CNES-CLS15 (Pujol et al, 2018)	
Geoid	EGM-DIR-R4 (Bruinsma et al, 2012) 2 years of reprocessed GOCE data +7 years of GRACE data	GOC005S (Mayer-Gürr,et al. 2015) Complete GOCE mission (Nov 2009-October 2013) + 10.5 years of GRACE data	
First Guess filtering	Optimal filter (Rio et al, 2011)	Optimal filter (Rio et al, 2011) with updated parameters	
Hydrological data	CTD (Cora3.4), ARGO Pref variable 200/400/900/1200/1900 Period 1993-2012	CTD and ARGO Pref variable 200/400/900/1200/1900 from CORA4.2 (1993- 2013), CORA5.0 (2014-2015) and CORA5.1 (2016) Period 1993-2016 Start to implement improvement	
Drifter Data	SD-DAC drifter, both drogued and undrogued: 1993-2012 Argo floats surface velocities: 1997-2013	SD-DAC drifter, both drogued and undrogued: 1993-2016 Argo floats surface velocities: 1997-2016	
Ekman model	Parameters fitted over the period 1993-2012, by longitude, latitude and month (Rio et al, 2014) Two levels: 0m and 15m	Parameters fitted over the period 1993-2016 by latitude and Mixed Layer Depth (from ARMOR3D) Two levels: 0m and 15m	
Wind Slippage correction	Rio et al, 2012	Update of Rio et al, 2012 in order not to discard the trajectories beginning/end	
Drifter filtering	3 days	Max (24 hours, Inertial Period)	
Altimeter data	Delayed-Time DUACS-2010 (Dibarboure et al, 2011)	Delayed-Time CMEMS-DUACS 2018 (Taburet et al, under review)	
Resolution	Global ¼°	Global 1/8°	

CNES-CLS18 Mean Dynamic Topography

Mean geostrophic velocities CNES-CLS18 MDT

Mean geostrophic velocities MSS-GOC005S

Comparison to independent drifter velocities: YEAR 2017

cm/s

RMS (% of drifter variance) as a fonction of coastal distance

MDT13 First Guess (MSS CLS11-GOCE DIR4)
MDT18 First Guess (MSS CLS15-GOC005S)
MDT13
MDT18

Zonal component

Coastal Distance (km)

RmsU (%)

Meridional component

MDT resolution

Average of GLORYS12 ADT over 1993-2012

→Higher resolution→May be residual noise

- Regional circulation
- Feedbacks from beta users

Mean Circulation around Australia

MDPI

Article

Examining the Accuracy of GlobCurrent Upper Ocean Velocity Data Products on the Northwestern Atlantic Shelf

Hui Feng ^{1,*}^(D), Douglas Vandemark ¹^(D), Julia Levin ² and John Wilkin ²

- Ocean Process Analysis Lab, University of New Hampshire, Durham, NH 03824, USA; doug.vandemark@unh.edu
- ² Department of Marine and Coastal Sciences, The State University of New Jersey, New Brunswick, NJ 08901, USA; julia@marine.rutgers.edu (J.L.); jwilkin@rutgers.edu (J.W.)
- * Correspondence: hui.feng@unh.edu; Tel.: +1-603-862-3960

Courtesy of Hui Feng, Douglas Vandemark, John Wilkin

Figure 2. Mean upper ocean current vectors for both in situ ADCP current measurements and GlobCurrent products on the Northwest Atlantic shelf in the GoM. In situ data are depth-averaged mean current vectors U_{DA15m} in blue while GlobCurrent vector currents U_G (Geostrophic only) are in red and U_{GE15m} (Geostrophic and 15 m Ekman) are in black. Two satellite altimeter tracks (Envisat track E797, Jason track J202) are also shown.

Figure 3. Derived mean dynamic topography (MDT) along (a) Envisat track E797 and (b) Jason track J202 from the western GoM across Georges Bank into the Atlantic slope region (Figure 2). Differing MDT estimates (see text) come from Mean Sea Surface (MSS) minus Geoid (G), either using MSS_{DTU} [6] or MSS_{CLS} [3] as well as from MDT_{AVISO} [4] and MDT_{RU} [48]. Grey areas depict the schematic bathymetry along these tracks. Note that the vertical offset between MDT_{RU} and MDT_{AVISO} is a matter of vertical datum but does not impact ocean dynamics.

Atlantic Shelf

Article

MDT CNES-CLS18 45°N 44°N 43°N 42°N

- Hui Feng ^{1,*}⁽²⁾, Douglas Vandemark ¹⁽²⁾, Julia Levin ² and John Wilkin ²
- Ocean Process Analysis Lab, University of New Hampshire, Durham, NH 03824, USA; doug.vandemark@unh.edu

Velocity Data Products on the Northwestern

² Department of Marine and Coastal Sciences, The State University of New Jersey, New Brunswick, NJ 08901, USA; julia@marine.rutgers.edu (J.L.); jwilkin@rutgers.edu (J.W.)

Examining the Accuracy of GlobCurrent Upper Ocean

* Correspondence: hui.feng@unh.edu; Tel.: +1-603-862-3960

Figure 2. Mean upper ocean current vectors for both in situ ADCP current measurements and GlobCurrent products on the Northwest Atlantic shelf in the GoM. In situ data are depth-averaged mean current vectors U_{DA15m} in blue while GlobCurrent vector currents U_G (Geostrophic only) are in red and U_{GE15m} (Geostrophic and 15 m Ekman) are in black. Two satellite altimeter tracks (Envisat track E797, Jason track J202) are also shown.

Figure 3. Derived mean dynamic topography (MDT) along (a) Envisat track E797 and (b) Jason track J202 from the western GoM across Georges Bank into the Atlantic slope region (Figure 2). Differing MDT estimates (see text) come from Mean Sea Surface (MSS) minus Geoid (G), either using MSS_{DTU} [6] or MSS_{CLS} [3] as well as from MDT_{AVISO} [4] and MDT_{RU} [48]. Grey areas depict the schematic bathymetry along these tracks. Note that the vertical offset between MDT_{RU} and MDT_{AVISO} is a matter of vertical datum but does not impact ocean dynamics.

Circulation in the Bay Of Biscaye

MDT CNES-CLS13

Circulation in the Bay Of Biscaye

MDT CNES-CLS13

Future work: regional MDTs CMEMNS

Very useful to compute regional MDTs

- \rightarrow we learn a lot about limitations of global MDT
- \rightarrow help to improve the GLOBAL

CONCLUSIONS

- Compared to the CNES-CLS13 solution, the New CNES-CLS18 MDT shows improved performance everywhere
- > Most significant in **coastal** areas and in **strong western boundary currents**
- Validation/feedbacks done also by beta users: Thanks a lot to all of them to theirs valuable feedbacks !!

- > Further improvements needed: At short scales, At high latitudes, In coastal areas
- ⇒ New in-situ observations are needed (HF radar), inclusion of other spaceborne measurements (SAR doppler, SST)
- Start to work on the next CNES-CLS MDT (2021 ?)
- If you are interested to be beta tester, let me know (<u>smulet@groupcls.com</u>)
- Do not hesitate to already give feedback about MDT CNES-CLS18 when available, feedbacks are always very helpful.
- Please inform us when you publish using CNES-CLS MDT

Mean Circulation in the Japan Sea

At each position r and time t for which an oceanographic in-situ measurement is available: dynamic height h (r,t) or surface velocity u(r,t),v(r,t)

- the iny situ data is processed to match the physical content of the altimetric measurement.

At each position r and time t for which an oceanographic in-situ measurement is available: dynamic height h (r,t) or surface velocity u(r,t),v(r,t)

- the in-situ data is processed to match the physical content of the altimetric measurement.
- the altimetric height/velocity anomaly is interpolated to the position/date of the in-situ data.
- the altimetric anomaly is subtracted from the in-situ height/velocity to estimate a mean

$$\overline{h}_P = h_{insitu} - h'_P$$
 $\overline{u}_P = u_{insitu} - u'_P$ $\overline{v}_P = v_{insitu} - v'_P$

MDPI

Article

Examining the Accuracy of GlobCurrent Upper Ocean Velocity Data Products on the Northwestern Atlantic Shelf

Hui Feng ^{1,*}^(D), Douglas Vandemark ¹^(D), Julia Levin ² and John Wilkin ²

- ¹ Ocean Process Analysis Lab, University of New Hampshire, Durham, NH 03824, USA; doug.vandemark@unh.edu
- ² Department of Marine and Coastal Sciences, The State University of New Jersey, New Brunswick, NJ 08901, USA; julia@marine.rutgers.edu (J.L.); jwilkin@rutgers.edu (J.W.)
- * Correspondence: hui.feng@unh.edu; Tel.: +1-603-862-3960

Figure 2. Mean upper ocean current vectors for both in situ ADCP current measurements and GlobCurrent products on the Northwest Atlantic shelf in the GoM. In situ data are depth-averaged mean current vectors U_{DA15m} in blue while GlobCurrent vector currents U_G (Geostrophic only) are in red and U_{GE15m} (Geostrophic and 15 m Ekman) are in black. Two satellite altimeter tracks (Envisat track E797, Jason track J202) are also shown.

Figure 3. Derived mean dynamic topography (MDT) along (a) Envisat track E797 and (b) Jason track J202 from the western GoM across Georges Bank into the Atlantic slope region (Figure 2). Differing MDT estimates (see text) come from Mean Sea Surface (MSS) minus Geoid (G), either using MSS_{DTU} [6] or MSS_{CLS} [3] as well as from MDT_{AVISO} [4] and MDT_{RU} [48]. Grey areas depict the schematic bathymetry along these tracks. Note that the vertical offset between MDT_{RU} and MDT_{AVISO} is a matter of vertical datum but does not impact ocean dynamics.

Modeling Wind-driven Currents (Ekman+Stokes) NEW MODEL

% of variance explained by the models using independent dataset

Surface

	All LAT (206239 data)	
Model	%U	%V
OLD (MDT13)	29.04	16.62
NEW (MDT18)	32.64	18.61

15 m

	All LAT (1451989 data)	
Model	%U	%V
OLD (MDT13)	13.0	10.2
NEW (MDT18)	15.67	11.35

 \rightarrow Comparison with independant dataset \rightarrow % Variance explained increases with the new model !