

Marine Gravity from the "First" two cycles of the Jason-2 LRO extension of Life mission

Ole B. Andersen, Adil Abulatitijiang

DTU Space National Space Institute

Outline

Jason-2 Long Repeat Orbit choice

Impact of Safe-holds

Gravity field Modelling.

Jason-2 Extension of Life Orbit

Altitude 1309 km (-27 km rel to 1336 km nominal orbit 371 day repeat 4,17,81,145 days sub-cycles

Main argument for orbit choice (to optimize operational usage):

- 17-day sub-cycle is good for mesoscale monitoring because it blends well with the 10-day cycle of Jason-3.
- The 145-day sub-cycle and a 371-day repeat cycle that are good for geodesy: the final grid is close to the Jason-1 GM grid. If Jason-2 EoL was to die after only half the repeat cycle, it would still provide a coarser but globally homogeneous dataset for geodetic users.
- The 4-day sub-cycle that is favorable for sea state applications (e.g. assimilation in operational wave models) and that blends well with Jason-3's 3-day sub-cycle.

IT HAS A BENEFITIAL SUBCYCLE IN CASE OF EARLY FAILURE

Jason-2 LROs:

Start date	End date	Comments
11 May 2017	18 July 2018	371 days
18 July 2018	25 July 2018	Transition to LRO 2
25 July 2018	1 October 2019	431 days?

Jason-2 LRO-1 (371 days repeat)

Jason-1 (408 days repeat)

Jason-2 Safeholds:

Start date	End date	Duration / Comments	
17 May 2017	11 July 2017	Transition to LRO 1 (20 days)	
14 Sept 2017	13 Oct 2017	31 days	
20 Feb 2018	02 March 2013	10 days	
18 July 2018	25 July 2018	Transition to LRO 2 (7 days)	
19 Oct 2018	25 Oct 2018	6 days	
26 Dec2018	07 Jan 2019	14 days	
16 Feb 2019	28 May 2019	100 days	
01 Oct 2019	End of Mission		

Late may 2018 Jason-2 was rewinded using sub-cycles (4,17,81,145 days sub-cycles), by 81 + 17 = 99 days. Completion: LRO-1 = (330 days out of 371) ~ 85 % LRO-2 = (311 days out of 371) ~ 83 %

Jason-2 GM track distribution

Across-track distance:

Jason 1 GM tracks

Range Precision (@ 20/40 Hz)

Altimeter	3-PAR @ 2 m	
Geosat	88.0	
ERS-1	93.6	
Envisat	78.9	
Jason-1/2	75.9	
CryoSat-2 LRM	64.7	
CryoSat-2 SAR	49.5	
AltiKa	34.3	

Key is RANGE PRECISION More precise SSH => More accurate Gravity ACCURACY is of less importance

$$\Delta g = L_{\Delta g}(T) = -\frac{\partial T}{\partial r} - 2\frac{T}{r} \approx -\frac{1}{\gamma}(\frac{\partial N}{\partial r} + 2\frac{N}{r})$$

Relevant steps: SSH/ΔSSH Interpolated onto grid Gravity is computed using FFT Filtering: Interpolation / gridding FFT (Enhance short wavelength).

Spatial filtering

Half wavelength spatial filtering 5 km (DTU17).

Resolves increasingly more signal related to geophysical strutures

We get improvement from Adding more data.....

But we have NOT been able to Decrease spatial filtering (work in progress)

Test regions

DTU Space

National Space Institute

Aegean results:

DTU

NW Atlantic:

Data	Std	Percent improvement
Jason-1 GM	2.76	
Jason-2 (1 st year)	2.77	~-1 %
Jason-2 (2 nd year)	2.78	~-1 %
Jason-2 (all)	2.68	4%
C2 only (8 years)	2.66	5%
SA only (3 years)	2.67	4%
Combinations:		
C2+SA+J1	2.58	7%
C2+SA+J2	2.57	7%

Summary.

- >Impact of 2 cycle Jason-2 on gravity field modelling
- Problems due to Jason-2 safehold.
- >Expect improvements (fine tuning filtering, retracking etc)
- >Jason-2 LRO "orbit" is now taken (J-2 Graveyard).

>Future potential Jason-3 GM orbit must "start over".

- >Important to rewind orbit to ensure spatial coverage.
- >Important to initiate future GM as early as possible.
- Optimally FOUR interleaved LRO cycles could get 2 km resolution.
- SWOT will be a game changer