Lessons learned from Sentinel SARM missions in preparation of Jason-CS

Regeneration 🖉 🖉 🖉

¢cnes

M. Raynal, E. Cadier, S. Labroue, T. Moreau, P. Rieu (CLS) P. Féménias, F. Bordes (ESA) F. Boy, N. Picot (CNES)

Context

SARM was recommended to be activated for the first time at global scale by the scientific community and the Copernicus Services:
 Now Sentinel-3A and -3B operate in SARM at global scales, since
 3.5 and 1.5 years respectively :

- Successful missions for the Copernicus services:
- Excellent data availability
- Excellent data quality and consistency with other altimeters at long wavelengths

Impact of Sentinel in CMEMS SeaLevel service

Courtesy: Yannice Faugere

S3B Impact study on L4 products over 1 month (March):

- Global EKE increase
 - 150 cm²/s² in high variability areas
 - Decrease near equator : planetary wave
- → Additional eddies observed when Sentinel-3B is used

→ Other eddies characteristics changes (amplitude; shape, position)

Formal mapping error reduced by ~5% (locally up to 20%; max at Jason-3 intertrack positions

OSTST Conference, October 2019, Chicago

Sentinel-3B contributes to reduce the mesoscale mapping errors

Mean(ERR with S3B) - Mean(ERR without S3B)

🗠 Impact of Sentinel in CMEMS wave service

Courtesy: Lotfi Aouf

Improvements induced by the assimilation of S3A & S3B altimeters in the global wave height model

Validation with Jason-3 and Saral/altiKa over Jan-Feb-March 2019

OSTST Conference , October 2019, Chicago "

Context

SARM was recommended to be activated for the first time at global scale by the scientific community and the Copernicus Services:
 Now Sentinel-3A and -3B operate in SARM at global scales, since
 3.5 and 1.5 years respectively :

- Successful missions for the Copernicus services:
- Excellent data availability
- Excellent data quality and consistency with other altimeters at long wavelengths

This presentation aims at summarizing / reviewing the remaining limitations to to fully exploit the potential offered by SARM technique.

Range and SWH : short wavelength (< 10 km) errors

□ Although the SARM noise floor (instrumental + processing) is lower than for conventional altimetry, it is affected by swell waves (depends on swell period and direction) → See P. Rieu's presentation based on S3A-B tandem phase results

OSTST Conference , October 2019, Chicago 6

Range : Long wavelengths errors

□ Patterns are related to meridional wind speed component

OSTST Conference, October 2019, Chicago

SWH : Long wavelengths errors

- □ SARM SWH are biased wrt to conventional altimetry → this bias depends on wave height, wave period and wave direction
- This result is observed using different SARM model approaches (analytic / numerical) for different satellites S3A, S3B and Cryosat-2
- Ongoing studies / first results show that this effect could be related to wave orbital velocity (C. Buchhaupt / A. Egido / A. Laiba results)

OSTST Conference, October 2019, Chicago

SWH : Long wavelengths errors

□ Other effect to explain slight differences observed between ASC and DSC passes ?

EPOCH LR-RMC ASC (dB)

→ Effect of the waveform centering: solution based on SARM model 0-masking is under investigation

Sigma0 : Long wavelengths errors

 □ Small bias between SARM and P-LRM sigma0 related with satellite radial velocity This 0.1 dB error impacts wind speed estimation by 30 cm/s
 (0.03 dB → 10 cm/s on wind speed from Ablain et al. 2012)

OSTST Conference , October 2019, Chicago

Climate scales errors

- The SARM /P-LRM range comparisons (without SSB correction) clearly highlight variations as function of time:
- This variation is not related to the PTR shape evolution (shown by J. Poisson et al.) as its effect has similar magnitude on SARM and P-LRM ranges and cancels out in the difference
- > This variation is also observed on other retracker (S3PP dataset)
- This variation is also observed in Sentinel-3B (while SRAL-B is in different regime) thus is instrument independent

OSTST Conference , October 2019, Chicago

Sentinel-3 SARM errors : Summary

Sentinel-3A & 3B instruments and derived datasets meet the requirements and fully contribute to the ocean monitoring in the Copernicus services.

- Summary of the SARM residual small errors observed with respect to conventional altimetry
 it should be investigated to improve:
- Our understanding of the SARM sensitivity to geophysical effects.
- Data quality to prepare for Jason-CS and future missions

N Car

Param	Error	Amplitude	Wavelength
Range & SWH	Swell impact (T02, Dir)	~several cm	<= 10 km
Range	Meridional wind speed effect	2 cm	>100 km
SWH	Wave height dependency	10/15 cm	>100 km
SWH	Swell dependency	5/10 cm	>100 km
SWH	waveform centering dependency	10 cm	> 100 km
Sigma0 / WS	Radial velocity dependency	0.1 dB / 30 cm/s	> 100 km
Range	Temporal drift	1 mm/y	> month
?	others	?	?

