

Current Results from Multi-mission Calibrations at the Permanent Facility for Altimetry Calibration in west Crete, Greece attaining Fiducial Reference Measurement Standards

Mertikas S., C. Donlon, P. Féménias, D. Galanakis, I.N. Tziavos, G. Vergos, T. Guile, P. Vuilleumier, M. Lin, G. Chen, X. Frantzis, A. Tripolitsiotis

Gavdos/Crete Permanent Cal/Val Facility

Land & Sea Calibrating Regions

Transponder at CDN1 Cal/Val

Gavdos sea-surface Cal/Val

Groundtracks around Crete & Gavdos

Space Geomatica P.C

Transponder & Sea-Surface simultaneous

Mertikas OSTST-Chicago | 21-25-Oct-2019 | Slide

 \bigcirc

C FUMETSAT

eesa

¢cnes

GeoMatLab

Major Cal/Val and crossover sites

GVD8 GVD7 GVD0

DIAS

Simultaneous Transponder & Sea Cal/Val

Transponder CDN1 Cal/Val Facility

Sea-surface Cal/Val Facilities

CDN1: ESA S-3 Altimeter Calibration

*

Space Geomatica P.

Mertikas OSTST-Chicago | 21-25-Oct-2019 | Slide

Transponder Calibrations

Jason-3, 9-June-2018

Sentinel-3A (3-Sept-2019) & Sentinel-3B (right, 6-Oct-2019) ESA Copyright ---- SENTINEL-38 TRANSPONDER PASS -Mode: SAR Open Loop Fixed Gain - UTC: 05-Feb-2019 08:49:18

CryoSat-2, 20-Sept-2019

Mertikas OSTST-Chicago | 21-25-Oct-2019 | Slide 10

S3A Transponder Cal/Val (CDN1): Pass No.14

- S3A Ascending Pass No. 14, Cycles: 3-45
- NTC, Processing Baseline: 2.43,
- Transponder Range Bias B= +6.8 mm ± 2 mm (FRM Uncertainty ± 41 mm),

S3B Transponder Cal/Val (CDN1): Pass No.335

- S3B Descending Pass No. 335
- NTC, Processing Baseline: 2.43,
- Transponder Range Bias B= -0.7 mm ± 4 mm (FRM Uncertainty ± 41 mm),

S3A SSH Bias: Pass No. 14 (Ascending)

- S3A Ascending Pass No. 14, Cycles: 2-48
- WAT, NTC, Processing Baseline: 2.43,
- Sea-Surface Height Bias B= -7 mm ± 4 mm (FRM ± 36 mm) ,

S3A SSH Bias: Pass No. 335 (Descending)

- S3A Descending Pass No. 335, Cycles: 2-46
- WAT, NTC, Processing Baseline: 2.343,
- Sea-Surface Height **Bias B= -3.8 mm \pm 6 mm** (FRM \pm 36 mm),

S3B SSH Bias: Pass No. 71 (Ascending)

- S3B Ascending Pass No. 71, Cycles: 20 and 28
- WAT, NTC, Processing Baseline 2.43,
- Sea-Surface Height Bias B= -7mm ± 5 mm (FRM ± 36 mm),

S3B SSH Bias: Pass No. 14 (Ascending)

- S3B Ascending Pass No. 14, Cycles: 21-28
- WAT, NTC, Processing Baseline: 2.43,
- Sea-Surface Height Bias B= -1 mm \pm 4 mm (FRM \pm 36 mm),

esa

European Space Agency

JA3 Transponder Cal/Val: Pass No.18

- Jason-3 Descending Pass No. 18, Cycles: 5-125
- SGDR-D, POE,
- Transponder Range Bias $B = +5.8 \text{ mm} \pm 3 \text{ mm}$ (FRM $\pm 36 \text{ mm}$),

JA3 Sea-Surface Cal/Val: Pass No.18

- Jason-3 Descending Pass No. 18, Cycles: 1-125
- SGDR-D, POE,
- Sea-Surface Height Bias $B = -2.6 \text{ mm} \pm 3 \text{ mm}$ (FRM $\pm 36 \text{ mm}$),

JA3 Sea-Surface Cal/Val: Pass No.109

- Jason-3 Ascending Pass No. 109, Cycles: 1-120
- SGDR-D, POE,
- Sea-Surface Height **Bias B= -2 mm \pm 3 mm** (FRM \pm 36 mm),

 \bigcirc

EUMETSAT COS

cnes

GeoMatLab

Radiometer set up at CDN1 Cal/Val:

Georatica

21-25 October, 2019 Chicago, Illinois

C FUMETSAT

ees

ècnes 쭏

GeoMatLab

Radiometer Operational at CDN1 Cal/Val

Mertikas OSTST-Chicago| 21-25-Oct-2019 | Slide 21

HY-2B Bias, Preliminary results @ CRS1 Cal/Val

- HY-2B Descending Pass No. 280, Cycles: 2-7,
- Preliminary Results,
- NIC still needs to be applied properly,
- Bias seems stable at this stage.

Cal/Val Summary

Sea-Surface Cal/Val

Satellite	Ascending	Descending	Average	Cycles
Sentinel-3A	-7 mm (No.14)	-2.4 mm (No.335)	-4 mm	2-48
Sentinel-3B	-7 mm (No.71)	-1 mm (N0.14)	-4 mm	20-28
Jason-3	-2.0 mm (No.109)	- 2.6 mm (No.18)	- 2 mm	1-124

Transponder Cal/Val

Satellite	Data	Descending	Cycles
S-3A	SAR, NTC, PB 2.43	+ 6.8 mm (No. 14)	3-43
S-3B	SAR, NTC, PB 2.43	- 9.0 mm (No. 14)	3 [Tandem]
S-3B	SAR, NTC, PB 2.43	- 0.7 mm (No. 14)	5 [Nominal]
JA-3	SGDR-D, POE	+ 5.8 mm (No.18)	5-125

Mertikas OSTST-Chicago | 21-25-Oct-2019 | Slide 23

Cal/Val Summary in Boxplots

Acknowledgements

• European Space Agency

- SERAC (Pierre Féménias);
- Craig Donlon
- CNES.

Backup Slides

Ocean Surface Topography Science Team Meeting (OSTST) 21-25 October, 2019 Chicago, Illinois

¢cnes 🥱 GeoMatLab

Laws of Monitoring Sea Level & Climate Change

Accuracy	In scientific and monitoring data we produce and evaluate.	Science
Accuracy	Information presented to the Public for understanding effects of sea level rise to their lives.	People
Accuracy	In helping make the right Decisions, and put into action the right Policies.	Future

Long-term, Consistent, Continuous Sea Level record only when:

- Monitoring of data quality we produce,
- Proper Archiving (data bases),
- Seamless Distribution of Retained Data,
- Monitor Performance of Observing Systems.

GeoMatLab

Mertikas OSTST-Chicago| 21-25-Oct-2019 | Slide 28

Fiducial Reference Measurements for Altimetry

New Strategy to achieve:

- Reliable,
- Long-term,
- Consistent, Redundant,
- Undisputable altimetry products.

ESA Effort to reach:

- Uniform and Absolute,
- Standardization of Earth observation,
- Uncertainty on Metrology Standards,
- Trust on data we produce
- Correct information to Pubic,
- Right decisions for Policies.

esa

European Space Agency

Schematic Performance of Guanlan

SWOT + Guanlan + other interferometric altimeters missions, bring the altimetric oceanography from a meso-scale period to a sub-mesoscale era.

a nadir swath of ~5 km (Ka-Band).

□ The Ocean lidar (Blue + Green) has a nadir footprint of ~70 m.

Calibration and Validation of Guanlan

- Calibration of SSH: ground CAL before launch + in-orbit CAL after launch.
 - Calibration of Ocean Lidar: Airborne lidar.

Calibration/validation facility for the Guanlan Interferometric Altimeters and Lidar