

Corsica: A 20-Yr Multi-Mission Absolute Altimeter Calibration Site

P. Bonnefond⁽¹⁾, P. Exertier⁽²⁾, O. Laurain⁽³⁾, T. Guinle⁽⁴⁾, P. Féménias⁽⁵⁾

⁽¹⁾Observatoire de Paris/SYRTE, Paris, France
 ⁽²⁾GET, Toulouse, France
 ⁽³⁾OCA/Geoazur, Sophia-Antipolis, France
 ⁽⁴⁾CNES, Toulouse, France
 ⁽⁵⁾ESA/ESRIN, Frascati, Italy

Systèmes de Référence Temps-Espace

OSTST meeting - Oct. 21-25, 2019, Chicago, USA

Only place where the calibration can be performed from 2 independent sites (Ajaccio and Senetosa, distance of ~37 km, ~5 s) on the same track:

- Mitigates geodetic errors
- Almost the same sea state conditions
 Also link the past and current other
 missions (T/P-Jason and ERS-Envisat series)

Corsica Multi-mission Calibration Site

- Senetosa CNES calibration site established in 1998
 - Supports continuous monitoring of Jason-3 (and formerly T/P and Jason-1&2)
 - Equipped with 4 pressure tide gauges leveled to the permanent GPS receiver
- Ajaccio configuration established in 2000
 - Supports continuous monitoring of SARAL/AltiKa (and formerly ERS, Envisat)
 - Fiducial point near Ajaccio equipped with GPS/SLR(FTLRS)/DORIS.
 - Equipped with a radar tide gauge (SHOM) leveled to the permanent GPS receiver
- Corsica multi-mission calibration site: existing facilities also used for CryoSat-2, HY-2A and Sentinel-3A&B
- **Open-ocean altimeter readings** connected to tide gauges via detailed **local geoid model**
 - Derived from intensive GPS buoy and catamaran surveys along ground track (in 1999 for Senetosa). Extension to Ajaccio (2005) and Capraia (2004)
 - Open-ocean verification locations for GPS-based SSH measurement systems deployments.
 - Planned connection of the Ajaccio and Senetosa local geoids along the Sentinel-3A track

Update of the geodetic datum

It sometimes takes time to clean out our closet ...

The SSH biases for all the missions have been recomputed based on these geodetic datum changes.

(see Bonnefond et al. 2019 (https://doi.org/10.1016/j.asr.2019.09.049) in 25YPRA ASR Special issue) OSTST meeting - Oct. 21-25, 2019, Chicago, USA 3

Using either indirect (tide gauges) or direct (GPS-zodiac) calibration/validation approach gives similar SSH bias, respectively -67 ± 5 mm and -64 ± 10 mm. Even during the Drifting Phase, we can continue to monitor the SSH bias using both approaches with a good agreement compared to the whole time series and a period close to the initial one: 36 days in average compared to the 35-day repeat period during the nominal phase, but not evenly distributed in time and location.

7

Calibration from Corsica

Absolute SSH biases over the whole data sets:

T/P ALT-A:	+25 ±8 mm (MGDR++)
T/P ALT-B:	+24 ±4 mm (MGDR ⁺⁺)
T/P POS-1:	+12 ±10 mm (MGDR ⁺⁺)
Jason-1:	+43 ±3 mm (GDR-E)
Jason-2:	+16 ±2 mm (GDR-D)
Jason-3:	-7 ±3 mm (GDR-T)
ERS-2:	+673 ±19 mm (REAPER)
Envisat:	+491 ±6 mm (FRMV3)
CryoSat-2:	+7 ±4 mm (GPOD baseline)
SARAL:	-67 ±5 mm (GDR-T)
S3A SAR:	+8 ±5 mm (PDGS, NTC)
S3B SAR:	-14 ±5 mm (PDGS, NTC)

Jason-1 reprocessing (GDR-E):

Main findings:

Jason-2 (GDR-D): Nothing to declare, waiting for GDR-F

Jason-3 (GDR-T):

• A very stable SSH bias close to zero, waiting for GDR-F before Jason-CS launch

· IGDR and GDR are very close in terms of quality

Sentinel-3A&B (PDGS):

Sentinel-3A (NTC): a very stable SSH bias close to zero for SAR

 Sentinel-3B (NTC): first 4 cycles shows a SSH bias statistically close to Sentinel-3A time series CrvoSat-2 (GPOD):

• Re-processing of the whole CryoSat-2 data (SAR, baseline C) gives a very stable SSH bias of +7 mm SARAL/AltiKa (GDR-T):

• SSH bias monitoring also during the drifting phase and is stable (-66 mm), waiting for GDR-F

Wet tropospheric correction from radiometers compared to GPS:

no clear offsets for Jason series as well as for Sentinel-3A&B and SARAL/AltiKa

Backup slides

Update of the geodetic datum (1/2)

It sometimes takes time to clean out our closet...

In the frame of the RENAG project (http://renag.resif.fr) a **complete reanalysis of the GPS coordinates has been performed** for the Ajaccio (AJAC) and Senetosa (RG00) reference markers **in the ITRF2014 reference frame**.

In terms of absolute vertical coordinates these new solutions have changed our historical references:

• 98.7708 m for **Ajaccio** (AJAC) => -1.5 mm when compared to our historical reference (and -0.7 mm compared to official ITRF2014)

• 89.5651 m for **Senetosa** (RG00) => **-24.2 mm when compared to our historical reference** (and -4.5 mm compared to a solution computed recently with GIPSY/JPL over the same period)

The small values of the velocities and the opposite signs within a very short distance (~37 km) suggest that there is **no vertical geophysical motion over this area**. We then considered in this study a zero velocity for both sites. Over the whole studied periods, 1998-present for Senetosa and 2000-present for Ajaccio, it will lead to a possible error of respectively ~6 mm and ~2 mm.

Impact of the geodetic datum update

The update of the up coordinate (-24.2 mm) for the Senetosa reference marker (RG00) improves the consistency with Harvest and Bass Strait for all the altimeters (T/P-A&B, Jason-1,2,3). Comparisons are based on OSTST 2018 results for both Harvest and Bass Strait.

Absolute calibration accuracy at the cm level is still a challenge...

Stability of the geodetic reference Leveling of the in situ instruments

Less than 1 mm differences even after 10 years

Reference of the tide gauge mount

Tide gauges are installed by pair: M4/M5 (photo) on one side of the bay M3/M7 on the other side

Reference marker (G5 **Pipe for leveling** Reference of the tide gauge pressure

OSTST meeting

Stability of in situ measurement system Comparisons with independent measurements

Zoom Day 10D 1M 3M Temporal series of tide gauges differences since 1998 May 11, 1998 To May 7, 2019

- MISENE - MZSE	NE - MISENE -	- M4SENE -	- MSSENE - M6SENE		SENE-M2SENE -M1SENE-M	M3SENE - M2SENE-M3SENE
- M3SENE-M4SENE	— M3SENE-M5SENE — M5SENE-M7SENE	GPS-M4	M6SENE — M3SENE-M • GPS-M5	7SENE — M4SENE-M	ISSENE — M4SENE-M6SENE	- M4SENE-M7SENE

Average differences at the few millimeters level with ~1 cm standard deviation Stability of the differences better than ~0.1 mm/yr

GNSS system for measuring SSH

-	in m					
	CIDC		and the second		They See	
	GPS re	ceiver	and bat	J	al with the state	
	-	1	00	- And	-	
An	tenna A	RP to S	ea Leve	l = 47 cr	n -	-
		and a				
North States						

Type of comparaison	Mean (mm)	σ (mm)	Drift (mm/yr)	Number
between tide gauges since (1998)				
M3SENE-M4SENE	-2.3	10.9	-0.07 ± 0.02	10184
M3SENE-M5SENE	-3.6	12.0	+0.07 ± 0.02	16357
M4SENE-M5SENE	-0.9	7.71	+0.05 ± 0.01	13026
between GNSS et tide gauges (since 2012)				
GPS-M4SENE	-0.6	7.7	-0.28 ± 0.47	64
GPS-M5SENE	-0.5	9.4	-0.28 ± 0.52	83

OSTST meeting - Oct. 21-25, 2019, Chicago, USA 14

monitoring of the wet tropospheric correction:

- No significant offsets observed
- Drifts are below 1 mm/yr (for long series)

The wet tropospheric corrections from Ajaccio and Senetosa GPS receivers distant by 40km are coherent reflecting small differences (<1cm rms) due to local weather differences

17

Radiometer Wet Tropospheric Correction compared to GPS

Corsica Absolute Altimeters Calibration

- No significant offset observed for SARAL/AltiKa

correction: