

Jet Propulsion Laboratory California Institute of Technology

Global Calibration and Validation of Reprocessed TOPEX Side-B Data

Jet Propulsion Laboratory, California Institute of Technology

Matthieu Talpe on behalf of JPL and CNES Cal/Val teams

© 2019 California Institute of Technology. Government sponsorship acknowledged.

1

TOPEX Calval

2

TOPEX Calval

2

	MGDR-B	GDR-F	
Altimeter parameters	Onboard	Numerical Retracking	
Range correction	Wallops Cal1	Numerical Retracking	
Sigma0 correction	Wallops Climatological	Numerical Retracking	
Radiometer Sigma0 attenuation	Uncalibrated	Calibrated	
Radiometer wet path delay	Uncalibrated	Calibrated + coastal retrieval	
Dry tropospheric correction	ECMWF Operational (no S1/S2)	ERA Interim + S1/S2	
Model wet path delay	ECMWF Operational	ERA Interim	
Sea State Bias	Parametric (Gaspar et al., 1994)	Non-Parametric (Vandemark and Feng, 2019)	
Wind speed	Witter and Chelton (1995)	Collard (2005)	
Orbits	Operational: GSFC and CNES	Reprocessed ITRF14: GSFC and CNES	
Geophysical corrections	1990s standards	GDR-F	

Updates in TOPEX products

	MGDR-B	GDR-F	
Altimeter parameters	Onboard	Numerical Retracking	
Range correction	Wallops Cal1	Numerical Retracking	
Sigma0 correction	Wallops Climatological	Numerical Retracking	
Radiometer Sigma0 attenuation	Uncalibrated	Calibrated	
Radiometer wet path delay	Uncalibrated	Calibrated + coastal retrieval	
Dry tropospheric correction	ECMWF Operational (no S1/S2)	ERA Interim + S1/S2	
Model wet path delay	ECMWF Operational	ERA Interim	
Sea State Bias	Parametric (Gaspar et al., 1994)	Non-Parametric (Vandemark and Feng, 2019)	
Wind speed	Witter and Chelton (1995)	Collard (2005)	
Orbits	Operational: GSFC and CNES	Reprocessed ITRF14: GSFC and CNES	
Geophysical corrections	1990s standards	GDR-F	

	MGDR-B	GDR-F	
Altimeter parameters	Onboard	Numerical Retracking	
Range correction	Wallops Cal1	Numerical Retracking	
Sigma0 correction	Wallops Climatological	Numerical Retracking	
Radiometer Sigma0 attenuation	Uncalibrated	Calibrated	
Radiometer wet path delay	Uncalibrated	Calibrated + coastal retrieval	
Dry tropospheric correction	ECMWF Operational (no S1/S2)	ERA Interim + S1/S2	
Model wet path delay	ECMWF Operational	ERA Interim	
Sea State Bias	Parametric (Gaspar et al., 1994)	Non-Parametric (Vandemark and Feng, 2019)	
Wind speed	Witter and Chelton (1995)	Collard (2005)	
Orbits	Operational: GSFC and CNES	Reprocessed ITRF14: GSFC and CNES	
Geophysical corrections	1990s standards	GDR-F	

	MGDR-B	GDR-F	
Altimeter parameters	Onboard	Numerical Retracking	
Range correction	Wallops Cal1	Numerical Retracking	
Sigma0 correction	Wallops Climatological	Numerical Retracking	
Radiometer Sigma0 attenuation	Uncalibrated	Calibrated	
Radiometer wet path delay	Uncalibrated	Calibrated + coastal retrieval	
Dry tropospheric correction	ECMWF Operational (no S1/S2)	ERA Interim + S1/S2	
Model wet path delay	ECMWF Operational	ERA Interim	
Sea State Bias	Parametric (Gaspar et al., 1994)	Non-Parametric (Vandemark and Feng, 2019)	
Wind speed	Witter and Chelton (1995)	Collard (2005)	
Orbits	Operational: GSFC and CNES	Reprocessed ITRF14: GSFC and CNES	
Geophysical corrections	1990s standards	GDR-F	

Standard Deviation, J1 and TOPEX Differences

Standard Deviation, J1 and TOPEX Differences

• MLE4 retracking is consistently better than MGDR.

Improvement in altimeter wind speed

Improvement in altimeter wind speed

Improvement in altimeter wind speed

- The GDR-F wind speed instability early in side-B is traced back to sigma0 instability.
- The alt. wind speed is aligned to J1 based on sigma0 calibration during the J1 tandem phase.

23 October 2019 | OSTST | Chicago, USA

- The GDR-F radiometer path delay is more consistent with ERA Interim.
- The 4-mm, 60-day signal induced by yaw-state dependent thermal environment is attenuated by end-of-mission recalibration of radiometer.

- The GDR-F radiometer path delay is more consistent with ERA Interim.
- The 4-mm, 60-day signal induced by yaw-state dependent thermal environment is attenuated by end-of-mission recalibration of radiometer.
- The ERA model wet path delay provided in GDR-F eliminates "jumps" caused by model changes in ECMWF operational analysis in MGDR.

SSHA crossovers using different orbits show significant reduction of geographically correlated errors

SSHA crossovers using different orbits show significant reduction of geographically correlated errors

23 October 2019 | OSTST | Chicago, USA

Changes in long-term evolution of SSHA are within 1 cm

Changes in long-term evolution of SSHA are within 1 cm

Conclusion

- TOPEX side-B product update from MGDR-B to GDR-F:
 - > The performance of TOPEX GDR-F side-B meets Jason/S6 mission requirements.
 - e.g., Standard deviation of SSH crossovers = 4.55 cm, implies RMS noise = 3.2 cm.
 - > MLE4 retracking mostly removes hemispherical biases in SSHA and SWH.
 - GDR-F standards for geophysical models and ITRF14 orbit solutions facilitate consistency with the Jason time series.
 - Atmospheric path delays are more consistent with ERA interim.
 - New orbits improve SSHA crossovers variance and reduce geographically-correlated errors.
- Next steps:
 - Perform side-A calibration and validation.
 - Complete POSEIDON retracking and calibration/validation.
- Acknowledgements: CNES geophysical models, CNES/CLS Cal/Val team, UNH SSB team, CNES and GSFC POD teams.

Related OSTST presentations

- **"TOPEX Data Reprocessing using a Numerical Retracking Approach"**, Jean-Damien Desjonquères et al., Instrument Processing Session, Tuesday 22 October 9 AM
- "Assessment of the last TOPEX Side-B reprocessing", Calval Session, Hélène Roinard et al., Thursday 24 October, poster CVL_010
- "Sea state bias for retracked TOPEX altimeter data", Instrument Processing Session, Hui Feng et al., Thursday 24 October, poster IPC_002

- TOPEX side-B product update from MGDR-B to GDR-F:
 - > The performance of TOPEX GDR-F side-B meets Jason/S6 mission requirements.
 - e.g., Standard deviation of SSH crossovers = 4.55 cm, implies RMS noise = 3.2 cm.
 - > MLE4 retracking mostly removes hemispherical biases in SSHA and SWH.
 - GDR-F standards for geophysical models and ITRF14 orbit solutions facilitate consistency with the Jason time series.
 - Atmospheric path delays are more consistent with ERA interim.
 - New orbits improve SSHA crossovers variance and reduce geographically-correlated errors.
- Next steps:
 - Perform side-A calibration and validation.
 - Complete POSEIDON retracking and calibration/validation.
- Acknowledgements: CNES geophysical models, CNES/CLS Cal/Val team, UNH SSB team, CNES and GSFC POD teams.

Related OSTST presentations

- **"TOPEX Data Reprocessing using a Numerical Retracking Approach"**, Jean-Damien Desjonquères et al., Instrument Processing Session, Tuesday 22 October 9 AM
- "Assessment of the last TOPEX Side-B reprocessing", Calval Session, Hélène Roinard et al., Thursday 24 October, poster CVL_010
- "Sea state bias for retracked TOPEX altimeter data", Instrument Processing Session, Hui Feng et al., Thursday 24 October, poster IPC_002

Questions?

23 October 2019 | OSTST | Chicago, USA

Back-up

Altimeter modes

Empirical Wallops sig0 correction

ason-1 minus TOPEX: Orbit – Range Ku – MSS – SSI	B, ascending and descending passes separated
--	--

		Orbit	Range	MSS	SSB
After	TOPEX	GSFC	MLE4	MSS 2015	UNH SSB
	Jason-1	GDR-E	MLE4	MSS 2015	J1 SSB

Inverse barometer correction is computed differently between GDR-F and MGDR-B standards

MGDR-B
$$H_{IB} = -9.948 (P_{atm} - 1013.3)$$

GDR-F $H_{IB} = -9.948 (P_{atm} - \overline{P_{atm}})$

Using prior IB computations leads to cm-level bias and seasonal signal.

Difference between IB from J1 and MGDR-B-like IB for J1

Addition of CG correction to SSHA

- Correction to SSHA from solar panel influence on satellite CG
- Adding CG correction (orange line) as opposed to subtracting (yellow) to SSHA (blue) reduces 60-day signal in SSHA difference to J1 SSHA

	MGDR-B	GDR-F
MSS	OSUMSS95	MSS2015
IB	Op. ECMWF	ERA Interim
HF Fluctuations	NA	ERA Interim
Ocean tide	CSR 3.0.1, FES95.2.1	GOT4.10c, FES2014b
Internal tide	NA	Ray and Zaron (2015)
Solid earth tide	Cartwright and Edden (1973)	Cartright and Edden (1973)
Pole tide	Wahr (1985)	Desai et al. (2015)