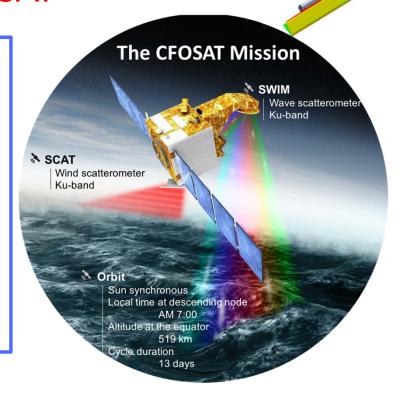
CFOSAT splinter session summary

Intense phase of CAL/VAL (9 months) completed

- ✓ Wave (Hs) and wind (U) products from nadir: excellent quality, beyond MLE4 (thanks to Adaptive Retracking)
- ✓ Wave spectral data: good products Work in progress to improve wave spectra (speckle noise) but can be used already

❖ Data access:

- ✓ Already available for science team, access enlarged through AVISO+ starting in a few weeks https://www.aviso.altimetry.fr/fr/missions/missions-en-cours/cfosat.html
 - Update soon to access to the data and CAL/VAL report
 - Announcement will be done through News AVISO and Mail OSTST list
- √ NRT delivery to operational centers via Eumetcast (starting 2020)
- **❖ Next CFOSAT science team meeting:** in France, November 2020 (TBC). Open to the OSTST community. Topics: CAL/VAL, science & application



CFOSAT

CFOSAT: A China/France joint satellite oceanographic mission.

Joint measurements of surface wind and wave

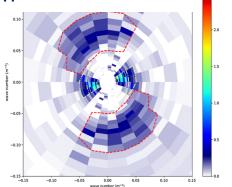
- ✓ a wind scatteromerer (SCAT)
 - => ocean surface wind vector
- √ a wave scatteromer (SWIM)
 - => directional spectrum of ocean waves + wind and Hs from nadir

SCAT

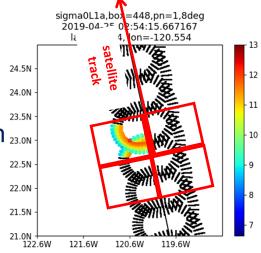
Funded and managed by 3 Agencies

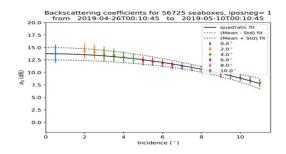
polar, sun-synchronous, global coverage, 13 day repeat cycles

PIship: Danièle Hauser (LATMOS/CNRS), Liu Jianqiang (NSO COPI : Lotfi Aouf Meteo-France)

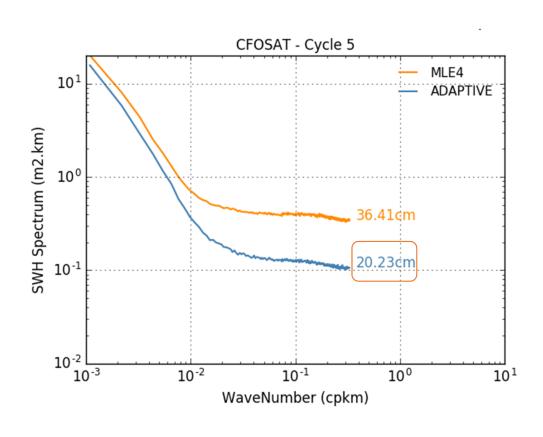

Main SWIM variables in the operational products

(CNES mission Center CWWIC)


Significant wave height and wind speed (along-track)- similar to altimeter mission

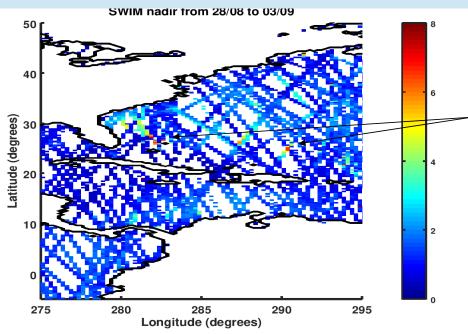

❖In continuous wave cells (70 km x 90 km) on 23.0N each side of the track
22.5N

➤ 2D wave spectra for wavelengths in the range [70-500] m- with 180° ambiguity in direction

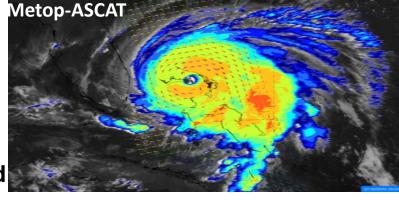


> Backscattering coefficient (sigma0) profile

Compared to current altimeters ground segment processing: Lower spectral noise level on SWH

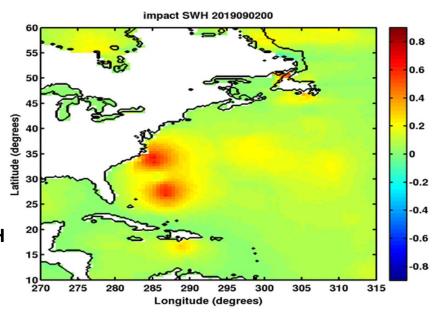

Large scale bias on MLE4 (No Look Up Tables) reduced

CFOSAT **Ground segment** instrumental noise = **20.23** cm


CFOSAT MLE4 instrumental noise = **36.41** cm

45 % noise reduction w.r.t MLE4!

Relevance of CFOSAT wave data in extreme weather conditions: Hurricane DORIAN


High waves captured by SWIM during Hurricane DORIAN 28 Aug to 3 Sep.

SWH

→ Assimilation of CFOSAT wave data ensures the best estimate of integrated wave parameters

During this event the assimilation of SWIM induces an improved SI of SWH by roughly 16 % in comparison with alterneters

CFOSAT Session recommendations

- 1. CFOSAT project encourages the OSTST to use these data
- Consider a CFOSAT/ALT synergy session for next OSTST (Oct 2020) to include:
 - measurement issues (SWOT, DDA, LRM)
 - applications that combine the benefits of both satellites
- 3. CFOSAT should look into providing precise SSH measurements from its nadir altimeter
- 4. Look at CFOSAT altimeter SWH and $\sigma 0$ to see first global full time adaptive retracking mission for a nadir altimeter (MLE3, MLE4, Adaptive data will also be on Jason-3 GDR-F)