

Rain flags for SWIM on-board CFOSAT: methods and assessment

Bruno Picard, Fluctus SAS Jean-Alexis Daguze, Mathilde Siméon, Annabelle Ollivier, Jean-Christophe Poisson, CLS Victor Gressani, IFREMER Cédric Tourain, Jean Michel Lachiver, CNES

2 Cnes

Rain Flags: what for ?

- Rain events have a direct impact on radar signal propagation, from light attenuation to extinction (or large distorsion of waveforms)

- Rain flag is a mature component of Nadir Altimetry since Topex-Poseidon (Tournadre, Quartly)

- The ultimate objective of rain flags is to improve the quality of Wave Spectra (off-nadir) and SSH (nadir) by discarding observations too impacted

Rain / Ku-band attenuation : orders of magnitude

- 10% of rain events
- 2% of rain rate > 3 mm/hr
- Median = 0.2 dB
- 2% of observations > 1 dB
- 0.1% > 3 dB

With a strong geographical distribution

Atmospheric attenuation computed from actual measurements (SSMI/S F17)

Double-band S/Ku rain flag over Jason-3 : orders of magnitude

- Altimeter rain flag : 6% of the observations over ocean

Double-band S/Ku rain flag over Jason-3 : orders of magnitude

- Altimeter rain flag : 6% of the observations over ocean
- Rain Flag + Invalid : 1% of the observations over ocean

6) © cnes

The current presentation gathers the work by the different teams involved in the validation of CFOSAT products

- Nadir rain flag
- Atmosphere and Microwave expertise

- Off-Nadir rain flag
- Wave expertise

 Atmosphere and Microwave expertise

Overview

Aim: compute a rain flag to discard CFOSAT data affected by rain

- Rain flagging at nadir: the CWT flag
- Rain flagging off-nadir: the LS_Var flag

Overview

Aim: compute a rain flag to discard CFOFAT data affected by rain

- Rain flagging at nadir: the CWT flag
- Rain flagging off-nadir: the LS_Var flag

Nadir Rain/ Bloom flag: approach – JC Poisson, JA Daguze, CLS

- The Rain/Bloom flag for SWIM is based on the Continuous Wavelet Transform approach
- It is directly inherited from the Matching Pursuit Algorithm applied on SARAL/AltiKa (see Tournadre et al., Marine Geodesy 2015):
 - The waveform trailing edge is directly impacted when the altimeter footprint crosses a rain cell or a sigma bloom
 - The idea is to find signatures in the pseudo-mispointing using a wavelet transform (the CWT is the integration of the wavelet power (ex. mispointing over all the wavelet scales) (fft and convolution)

CFOSA

It has been adapted to the specificity of SWIM: specific waveform, retracking...

Wavelet Power Spectrum (WPS)

Nadir Rain/ Bloom flag: validation

- Current version of the product is not optimal
- > Spatial distribution weakly correlated to rain, "drooling" effects

Rain impact detected

© cnes

Nadir Rain/ Bloom flag: validation

- Future version would allow to improve the detection of rain and bloom (would require some ground processing evolution)
- > Note that only 1% of the measurements are impacted by rain (Jason-3: 6% detected , 1% invalid)

Rain impact detected

© cnes

Nadir Rain/ Bloom flag: validation

- > Future version validation: colocated rain events observed by dedicated radiometer missions
 - Strong rain events over ITCZ are well detected but some are missing
 - Lower rain rates at higher latitudes are also not flagged

- Under sensitivity of the flag ?
- Robustness of SWIM to rainy areas thanks to its good SNR?
- Capability of CWT to focus on strong impact (compared to J3) ? (Yes!)
- Needs detailed validation focusing on nadir waveforms

Nadir Rain/ Bloom flag: validation

- > Future version validation: blooms are detected in realistic areas
- > This should be further validated but could be used to discriminate information for OFF nadir profiles

(13) © cnes

Overview

Aim: compute a rain flag to discard CFOFAT data affected by rain

- Rain flagging at nadir: the CWT flag
- Rain flagging off-nadir: the LS_Var flag

3 © cnes

Sigma0 off-nadir and rain effect

Towards a future rain flag for off-nadir measurements

- The ultimate goal will be to propose a flag that eventually improve the wave spectra by editing the profiles disturbed by atmospheric effects
- The first steps consist in
 - > selecting the profiles potentially impacted by those effects
 - analyse the impact on the waves
 - Iooping between these two steps in order to propose an optimal selection

Sigma0 off-nadir and rain effect: real data (Victor Gressani et al., IFREMER)

Scalar parameter related to the heterogeneity of the profiles computed: Low Scale VARiance LS_Var

3 © cnes

LS_VAR tuning and validation (M. Siméon CLS - V. Gressani)

Similar geographical pattern of LS_VAR and rain (IMERG 30mn/15km colocated)

- Qualitative spatial correlation over ITCZ / convective cells
- But not everywhere...

Diapositive 17

OA1 Ollivier Annabelle; 23/09/2019

Identifying the outliers

LS_VAR tuning and validation (M. Siméon CLS)

Editing using vmax=Q3+1.5IQR

CFOSAT 2° beam

2019-07-19 to 2019-08-01

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 SWIM sigma0 std @500m [dB] CFOSAT 2° beam vgeo < Q3 + 1.5iqr 2019-07-19 to 2019-08-01

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 SWIM sigma0 std @500m [dB]

19) © cnes

WORK IN PROGRESS

- Good filtering of strong events.
- Outliers represents 10-12% of the data with |latitude|<50.</p>
- Some remaining dynamic is still visible.

CONCLUSIONS

> NADIR : CWT FLAG

- Improved version in preparation
- Validation objectives (on-going):
 - To confirm the good behaviour the flag
 - > To confirm the good robustness of CFOSAT Nadir to light rain
- > OFF-NADIR: LS_VAR FIELD
 - > is a good candidate for detecting variability on the profiles due to rain
 - Validation objectives (on-going):
 - > To define a future FLAG that will improve the Wave Spectra

CONCLUSIONS

Next version of the product

- > NADIR: FLAG CWT, improved
- > OFF-NADIR: FIELD LS_VAR based on sigma0 profiles variability

Future version of the product

> OFF-NADIR: FLAG based on threshold applied to LS_VAR

谢谢, Merci Click to add text Thank you!