CFOSAT: New wind and wave observations from the nadir and near-nadir SWIM Ku-Band instrument

D. Hauser with contributions from

Alraddawi D., Aouf L., Chapron B., Collard F., Dalila M., Dalphinet A.,
Dufour C., Gouillon F., Grouazel A., Guitton G., Hermozo L., Husson R.,
Lachiver J-M, Lacrouts C., Mironov A., Nouguier F, Ollivier A., Perret B.,
Piras F., Rodriguez Suquet R., Schippers P., Tison C., Tourain C.

OSTST Conference, Chicago 20-25 October 2019

Outline

Introduction

- **CFOSAT objectives and main characteristics**
- Wave parameters from the SWIM instrument

***** First results

- ✓ Spectral parameters from off-nadir observations
- ✓ results from nadir presented by Annabelle Ollivier (next talk)

Conclusion

1- Introduction (1/2)

Continuous needs for wind and waves observations from space

- Wave dynamics and evolution
- Wind/wave interactions,
- Impact of waves on air/sea exchanges,
- Interaction of waves with currents, sea-ice
- Forcing of ocean circulation
- Boundary conditions for coastal studies
- Contribution to wave climate study

Needs for operational systems : wind and wave field analysis, wave forecasting

1-Introduction (2/2)

Wind and waves measured by altimetry :

- only wind speed for wind, and only SWH for waves .

- Useful but impact remains limited because of lack of spectral information

Spectral properties of ocean waves from space (directionality, wavelengths or frequency)

- from SAR, with some limitations (mainly long swell)

- since end 2018: using the SWIM radar on-board CFOSAT

2- CFOSAT

SCAT

CFOSAT: A China/France joint satellite oceanographic mission.

Joint measurements of surface wind and wave

✓ a wind scatteromerer (SCAT)
 => ocean surface wind vector

✓ a wave scatteromer (SWIM)
 => directional spectrum of ocean
 waves + wind and Hs from nadir

The CFOSAT Mission

Funded and managed by 3 Agencies

Plship : Danièle Hauser (LATMOS/CNRS), Liu Jianqiang (NSO CoPI : Lotfi Aouf Meteo-France) polar, sun-synchronous, global coverage, 13 day repeat cycles

***** A scientific mission :

- Wave dynamics and evolution
- Wind/wave interactions,
- Impact of waves on air/sea exchanges,
- Interaction of waves with currents, sea-ice
- Contribution to wave climate study
- Boundary conditions for coastal studies

(and secondary objectives on sea-ice and continental surfaces)

A demonstration and pre-operational mission: wind and wave field analysis, feed forecast systems (assimilation), contribution to global data bases (CMEMS,..)

SWIM

Wave scatterometer

- Ku band real aperture radar
- Sequential illumination with 6 incidence angles
 - > Beams 0°, 2°, 4°, 6°, 8°, 10°
- Rotating antenna (all azimuth direction acquisition): 5,6 rpm

Principle and main steps of the inversion: from signal to wave spectra

Main SWIM variables in the operational products

(CNES mission Center CWWIC)

Significant wave height and wind speed (along-track)- similar to altimeter mission

In continuous wave cells (70 km x 90 km) on 23.0N
 each side of the track

2D wave spectra for wavelengths in the range [70-500] m- with 180° ambiguity in direction

Alternative SWIM products from the Ifremer data center (IWWOC)

spectral energy in the original radial geometry of the instrument (not yet converted to wave height spectra nor corrected from noise effects)

example of radial density spectra (color codes) along the SWIM sampling (here 8° incidence beam)

Space-time analysis of long swell systems following their propagation paths after refocusing to their origin

3- First results from CAL-VAL studies **Spectral data from off-nadir beams**

Spectral data (from off Nadir SWIM observations)

Examples of 2D wave spectra

Temporary: 2D spectra masked (±15° on each side of the satellite track) in the data products (upgrade expected in a few months)

Density spectrum of speckle

Empirical analysis from fluctuation spectra of σ_0

- ✓ important increase of energy (factor 6 to 7) in a angular sector of about ±15° with respect to satellite track
 - due to decrease of Doppler bandwidth, (correlation of echoes)
- ✓ Far from along-track direction :
 - shape and level constant with azimuth , almost linear in wave number, no sea state dependence (conform to theory)

\checkmark within the ±15° sector with respect to satellite track:

- ✓ depends of latitude (understood)
- ✓ dependence with sea-state (not fully understood yet)

~ 8° incidence inter-tropical region

SWH < 2m and WS<5 m/s

Comparison to buoy (here Brittany-Atlantic)

Buoy (black) MFWAM SWIM (10°, 8°, 6°)

Buoy

2D – spectral correlation index (Hasselmann et al, 1996) between SWIM and model (MFWAM) spectra

Correlation Index estimated for the wavelength range $70 < \lambda < 500$ m)

- ✓ 66 % of data with R > 0.5
- ✓ lowest corelation in regions of along-track propagating swells (directions of masked data) and/or low sea-state (Hs < 1m)

dominant swell direction (from MFWAM model)

Preliminary assessments: Main parameters of the 1st partition (SWIM and MFWAM partitioned independently

limits: no cross-assignment of partitions, ±15° azimuth sector masked on SWIM spectra)

Illustrated here with SWIM beam 10° results

SWH

Wavelength

WIM Wavelength total of beam 10

SWIM versus MFWAM parameters of partitions

Spatial evolution of wave parameters- illustration for a fetch limited case (North Mediterranean sea)

4- Conclusion

Intense phase of the CAL/VAL completed.

- Very innovative mission, instrument and products
- Wave (Hs) and wind (U) products from nadir: excellent quality, ready to be widely disseminated and used
- Spectral data from off-nadir: very promising,
 - ✓ high correlation index between SWIM and model spectra
 - ✓ consistent shape of 1D height or slope spectra
 - detailed statistical performances (partition parameters) currently perturbed by the non perfect correction of speckle noise (and masking) => improvements in progress (empirical speckle model)
 - ✓ interest for global and specific wave studies (fetch limited, wave-current interaction, waves under sea ice -not shown,..)
 - Data access: already available for science team, access enlarged through AVISO+ starting in a few weeks - <u>https://www.aviso.altimetry.fr/fr/missions/missionsen-cours/cfosat.html</u>

NRT delivery to operational centers via Eumetcast (starting 2020)

Thank you !!

backup slides

(22) © cnes

SCAT

Wind scatterometer

- rotating fan beam concept with dual antenna system
- \Rightarrow Combines advantages :
 - Large swath and multiple viewing geometry
 - Rotating antenna: 3 rpm
- Incidences between 26° and ~50°
- Provides
 - > σ0
 - ➢ Ocean wind vector at the scale of ≈ 25 km x 25 km
 - Swath ~ 800 km

20

-200

-30

Assessment of the mean spectrum shape

Mean 1D slope spectra : SWIM compared to WW3 for different wind speed classes

Very good agreement for waves greater than 70 m in wavelength

	Hs (m)	direction	Wavelength (m)
Mean bias	part1 : 0.47 m part 2 : 0.44 m	part 1 : -0.5° part 2 : -0.4°	part 1 : -1 m part 2 : 8 m
Rmse	part 1 : 0.32 m part 2 : 0.23 m	part 1 : 16.1° part 2 : 19.3°	part 1 : 62 m part 2 : 76 m
Scatter index	part 1 : 14.6% part 2 : 26.3%		part 1 : 33.3% part 2 : 33.4%

When partitions are imposed identical

- Very good general performances
- Best results compared to MFWAM for the 10° beam (compared to 6 and 8 °)- not shown
- Wavelength : scatter due to abnormal population of long waves (probably due to non homogeneous scenes and parasitic peak at low wavenumber
- Overestimation of Hs of about 0.50 m, supported by the cases where Hs is less than 3m: probably due to insufficient rejection of speckle noise (see above)