

Retrackers Analyzed

- Unweighted Retrackers:
- ALES: Fits leading edge only; no (ONA)²

- MLE3 Fits all waveform without (ONA)²
- MLE4 Fits all waveform with (ONA)²
- PEACHI Newton-Raphson, all with (ONA)²
- Weighted Retracker:
- PEACHI Nelder-Mead, all with $(ONA)^2$

Parameters analyzed

- RAWSSHA (orbit height minus retracked range minus mean sea surface)
- SWH
- σ⁰
- PPP (pulse peakiness parameter)
- (ONA)², if the retracker estimates this
- Data analysis is at 20 Hz sampling for Jason-2 and Jason-3, and at 40 Hz sampling for SARAL.

Passes through the "South Pacific SAR Box" (longitude 200" to 275.2°, latitude -25.5° to -2.5°) where F. Boy identified a "spectral bump"

Data Analyzed

- Jason-2 Cycles 1-40: ALES, MLE3, MLE4
- 397 days beginning 12 July 2008 (1633 passes)
- Jason-3 Cycles 1-13: PEACHI, MLE3, MLE4
- 129 days beginning 17 February 2016 (442 passes)
- SARAL Cycles 9-12: MLE4
- 140 days beginning 19 December 2013 (1115 passes)

🛇 🏭 🛛 Pulse Peakiness (Auto-)) Spectra
PP spatial not called for SATAL PP spatial not called for SATAL PP spatial not called for SATAL Why is 12 > 13 P face with called for spatial not called for SATAL Why is 12 > 13 P face in wareform called for spatial not called for SATAL Why is 12 > 13 P face in wareform called for spatial not called for SATAL	Pulse Peakiness Parameter (PPP) spectrum looks like (ONA) ² spectrum. This parameter depends on the waveform only, and not on the retracker, so only 3 cases are shown here, one from each of the three data sets analyzed.

Cross-Spectral Analyses

Two types of cross-spectral analysis:

- MSC (magnitude-squared coherency), the square of the linear correlation coefficient between two variables. This shows us where one parameter is correlated with another.
- Admittance, the ratio (variable 2):(variable 1). This shows us, e.g., meters of SSHA per meter of SWH in sea-state bias.

8	SSHA – σ ⁰ Cross-Spectru	m: MSC
1.0	ITPENDE MEET HEAD Media Norther Applica	For MLE3, as much
	JEALES MEET HER ALES	as 20% of SSHA variance is due to σ ⁰
ш ^т П	SMRAE ADDEG MILLY	variance in the spectral bump. Ku (ONA) ² fitting spikes to 35% in a
2º WSC	Overall, correlations between SSHA and σ ^o are mostly small for λ > spectral bump. —	
SSHA .		narrow band. ALES does best overall at
0.2		minimizing the covariance of SSHA
0.0		and 6°.

Summary / Conclusions, 1/2

- Sea state bias is not a constant percentage; it is
- wavelength- and retracker-dependent.
- The "spectral bump" is due to correlated errors. + Fitting (ONA)^2 increases σ^0 errors.
- Overall, ALES has the best noise spectrum (low covariant errors, low/moderate SSB)

PEACHI Nelder-Mead minimizes SSHA variance but at the cost of strong correlation with SWH and new and larger SSB.

Summary / Conclusions, 2/2

- Comparison with SARAL AltiKa is instructive, as it has a narrower field of view and is beam-limited as well as pulse-limited.
- This study was in a relatively quiet area of the sub-Equatorial Pacific, so very large SWH or extreme weather are uncommon. A more global study may be needed to explore the full range of SSB conditions.