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THE PRELIMINARY COMPUTATION OVER THE MEDITERRANEAN AREA
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 Gravity data selected with a mean spacing of 1’×1’ from the following databases:
i) BGI
ii) SHOM
iii) Croatia
iv) Greece
v) Italy
vi) Turkey
vii) EIGEN6-c4 (void areas)

 The computation area : 36 <  < 48      -10 <  < 40 

 Geoid estimate based on the Remove-Compute-Restore method (ship gravity data only 
are used in this computation)

 Methods applied for geoid computation:
i) Fast-Collocation
ii) Stokes-FFT (WG kernel modification)



THE GGM AND DTM/BATHYMETRY IN THE REMOVE-RESTORE

3

• The GGM used in modelling the low-frequencies was EIGEN-6c4 (d/o 1000) 
(test computations have been also performed using GOCE-DIR5 to d/o 230; not successful)

• On land areas, SRTM3 was used as the detailed DTM (28 <  < 50   -12 <  < 42) 

• RTC effect computed up to 100km using TC (GRAVSOFT) and a reference DTM 
estimated by smoothing the detailed one (based on a 8’ moving average)

• Different DBMs have been re-gridded and merged with SRTM3 over the entire Mediterranean:
DTU10 (1’x1’), SRTM-PLUS15 (15”x15”), EMODNET (7.5”x7.5”)

These tests proved that the three DBMs are practically equivalent, and that they do not reduce the 
gravity residuals

no bathymetry correction was applied



RTC/BATHYMETRY TESTS OVER SEA
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Only area 3 was 
slightly better 
after RTC



THE REMOVE STEP: RESIDUAL GRAVITIES
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COMPARISON WITH AN ‘OCEANOGRAPHIC’ GEOID
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The geoid model is compared with an independent marine geoid:  

‘CLS’ geoid = MSS(CNES-CLS15) – MDT(SOCIB-CLS) 

(MSS error)

(MDT error)



RESULTS: PRELIMINARY GEOID ESTIMATES
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SPFOUR solutions compared to ‘CLS’ geoid: effect of debiasing method

StD=8.3 cm (July)                                                        StD=8.4 cm (September) 

Cruise wise Track wise
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Solutions obtained through different methods (track wise debiasing) compared to ‘CLS’ geoid

StD=8.1 cm                                                              StD=8.5 cm  

RESULTS: PRELIMINARY GEOID ESTIMATES

Stokes-FFT Fastcol



COMPARISON WITH DRIFTER DATA (I.E. GEOSTROPHIC CURRENT)
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Observed mean velocities

Zonal u

Merid v

Updated synthetic mean velocities dataset (1993-2016) 
+ Specific regional processing of the drifting buoys
(regional Ekman model), accurate error assessment



COMPARISON WITH DRIFTER DATA (I.E. GEOSTROPHIC CURRENT)
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Observed mean velocities

Zonal u

Merid v

Computation of mean
geostrophic velocities from

in-situ oceanographic
measurements and 
altimetry; filtering

Filtering of the MDT with a 
gaussian filter

Computation of the mean 
geostrophic currents

MDT=MSS – Geoid



COMPARISON WITH DRIFTER DATA (I.E. GEOSTROPHIC CURRENT)
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Zonal u

Meridional v

RMS of the difference (in cm/s) over the 
entire Mediterranean basin as a function 
of spatial scale (km)

Gravimetric geoid

EIGEN6C4 geoid

Altimetric geoid (with UCSD V24.1)
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COMPARISON WITH DRIFTER DATA (I.E. GEOSTROPHIC CURRENT)

Res: 50 km

Gravimetric geoid

Altimetric geoid

RMS of the filtered 
measured current speed in 
1°x1° bins 

Difference with the 
measured currents in 1°x1°
bins presented as a 
percentage of the total 
signal.

White bins indicate that the 
error is larger than 100%

Black dots indicate bins for 
which the gravimetric geoid 
gives better results
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COMPARISON WITH DRIFTER DATA (I.E. GEOSTROPHIC CURRENT)

Res: 15 km

Gravimetric geoid

Altimetric geoid

RMS of the filtered 
measured current speed in 
1°x1° bins 

Difference with the 
measured currents in 1°x1°
bins presented as a 
percentage of the total 
signal.

White bins indicate that the 
error is larger than 100%

Black dots indicate bins for 
which the gravimetric geoid 
gives better results



CONLUSIONS AND REMAINING WORK
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• Modeling RTC over sea does not reduce the gravity residuals; it was abandoned;

• The gravimetric geoid is overall less accurate than a geoid computed using altimetry-inferred 
gravity; locally (drifter evaluation) it can be more accurate, but it is not clear why;

• The ship gravity data (gravimetric geoid) seems to be affected by small-scale noise;

• The available data (quality and distribution) may not allow a more accurate gravimetric geoid;

 Fast collocation and Stokes-FFT are presently at the same level, after data debiasing and better 
tuning of the covariance function – but not optimum yet;

 Not all marine data have been used yet - debiasing required first;

 Land areas with bad data, or poor coverage (compatibility!), must be filled in;

 The data interpolation (gridding) and smoothing is not optimum, and more tests are necessary.



BACKUP

15



DIFFERENCE OF MEAN SEA SURFACES: CNES-CLS15 – DTU15
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BATHYMETRIE: GEBCO 2014
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