

First Marine Gravity field results from Jason-2 Long Repeat Orbit mission

Ole B. Andersen (DTU), W. Smith (NOAA), D. Sandwell (Sio),

 $f(x+\Delta x)=\sum_{n=1}^{\infty} \frac{d^n}{d^n}$

- G. Dibarboure (CNES), H. Harper (SiO)
- A. Egido (NOAA)
- B. and A. Abulaitijiang(DTU)

DTU Space National Space Institute

Geodetic Missions investigated.

• JASON-1 EOL

- April 2012 May 2013
- Jason-1 Extension-of-Life Scenario
- 1320 km orbit
- Low inclination (66°)
- 406 Days GM
- Track Spacing = 7.5 km

JASON-2 LRO

- Initiated June 2017 ->
- 371 days cycle.

D

Investigating possible/optimal Jason-2 LRO orbits (G. Dibarboure)

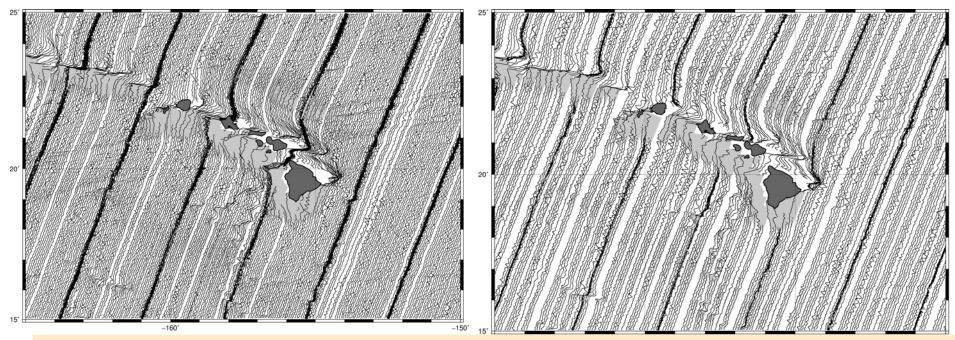
Jas 1380	on-2 EoL option		Altitude (km)	Delta Altitude (km)	Number of Revs per day	Sub-cycles (days, negative is westard)	Mesocale sampling uniformity (Jason-2 EoL + Jason-3)	Geodetic sampling uniformity (Jason 2 EoL + Jason1 GM)	Overlap event uniformity	Satellite debris (collision risk)	Tentative Priority
1360	12+247/401		1383.0	46.7	12+239/407	-2, 5, -17, -63, -172, 407	Excellent	Good	Very Good	Medium	3
() 1340		Ē	1371.0	34.7	12+247/401	3, -5, 13, 138, 401	Very Good	Good	Excellent	Good	2
) Altitude 1300		altitude	1309.5	-26.8	12+284/371	-4, 17, 81, 145, 371	Excellent	Very Good	Very Good	Very Good	1
^{!]]} 1300	12+284/371	Jelta	1282.9	-53.4	12+310/373	-6, -77, -148, 373	Good	Very Good	Very Good	Very Good	2
1280	12+310/373 -6	50	1277.3	-59.0	12+322/381	-6, 13, -71, 155, 381	Good	Very Good	Very Good	Very Good	2
1260	12+353/409		1270.0	-66.3	12+353/409	-7, 22, -73, 168, 409	Very Good	Medium	Excellent	Very Good	3

G. Dibarboure and R. Morrow, 2016: Value of the Jason-1 Geodetic Phase to Study Rapid Oceanic Changes and Importance for Defining a Jason-2 Geodetic Orbit. J. Atmos. Oceanic Technol., 33, 1913–1930 STST0.1 SPD1 PD4 PD2 O1 (8) 15.1. Ponta Delgada, Azores, Portugal

JASON-2 EOL Long Repeat orbit

Altitude 1309 km (Jason-3 alt -27 km):

- 1. It has a **17-day sub-cycle that is good for mesoscale** monitoring because it blends well with the 10-day cycle of Jason-3.
- 2. It has a 145-day sub-cycle and a 371-day repeat cycle that are good for geodesy: the final grid is close to the Jason-1 GM grid. If Jason-2 EoL was to die after only half the repeat cycle, it would still provide a coarser but globally homogeneous dataset for geodetic users.
- 3. It has a 4-day sub-cycle that is favorable for sea state applications (e.g. assimilation in operational wave models) and that blends well with Jason-3's 3-day sub-cycle.
- 4. It generates overlap events with Jason-3 that are well distributed at all time scales. There are no empty bins for the 10-day criterion, and only 3 empty bins for the 1day criterion. This orbit yields a high probability of collecting an overlap sample in any region, season, and for any time difference.

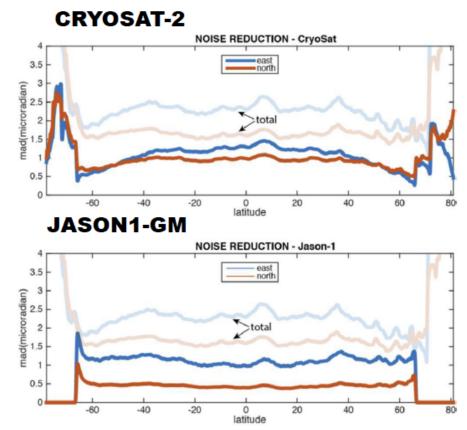

5. IT HAS A BENEFITIAL SUBCYCLE IN CASE OF EARLY FAILURE

along-track sea surface slope over Hawaii

• JASON-1 (14 month)

JASON-2 (12 + 1 month)

Status:


Jason-2 completed first LRO cycle.

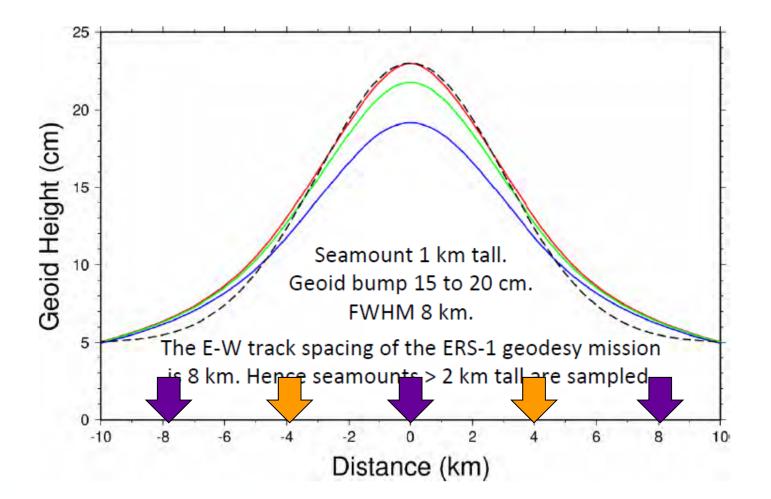
Several safeholds is visible but not critical due to orbit choice.

Entered second cycle since july 2018 with ground tracks shifted by 4 km.

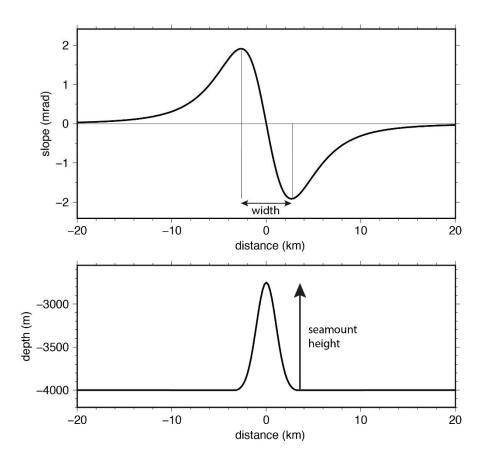
- Gravity noise reduction from Jason-1 GM is very good despite the short time series (4 times less than CS-2), thanks to the 66° orbit
- Greatest gravity improvement
 - at latitudes lower than 40°
 - in the east-west direction
- Resolution of current gravity models is 12 km (6km features)
- Difficult to improve upon with CryoSat alone (8-km fixed grid) or AltiKa (uncontrolled drift)
- Jason-2 is the <u>only</u> mission that can yield a 4-km grid after 2 years (and a 2-km grid after 4-years)

OSTST, September 2018 Ponta Delgada, Azores, Portugal

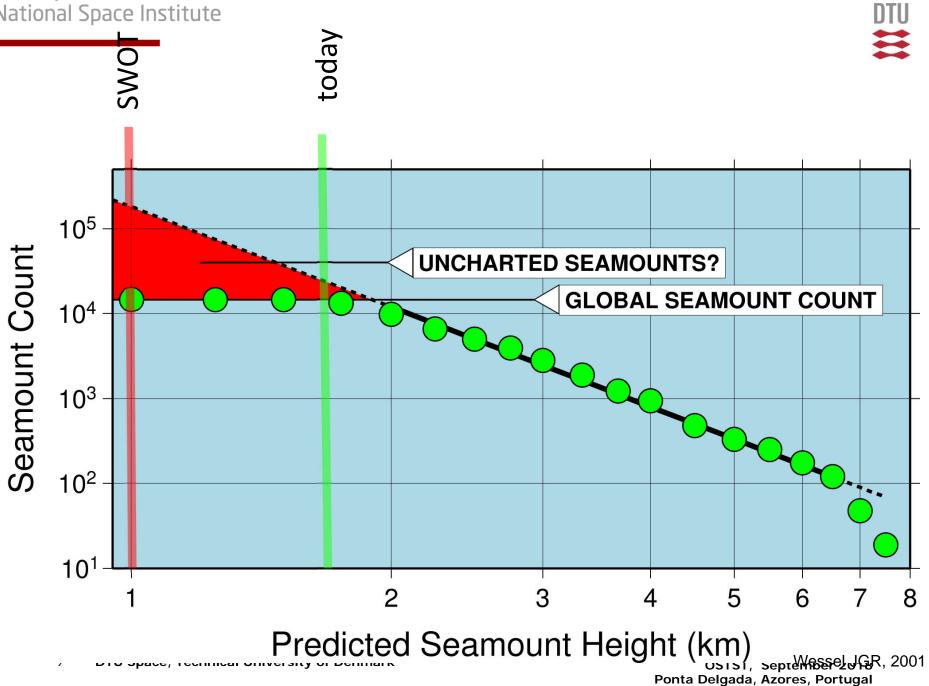
Jason-2


Jason-1

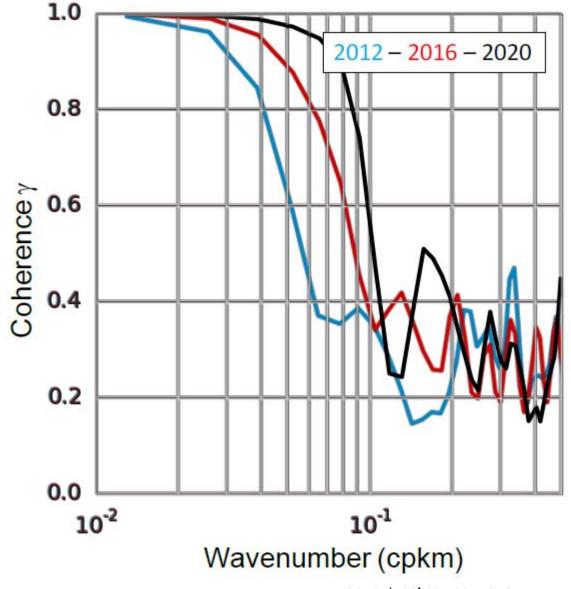
6 DTU Space, Technical U


ty of Denmark

Mapping requires spatially dense ground tracks


Signal of Gaussian Seamount

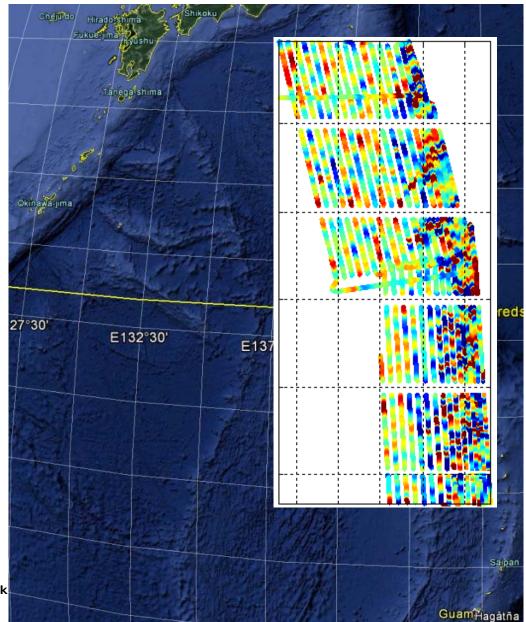
	sean	nount	sea surface			
	height (km)	radius (km)	slope (μrad)	width (km)	∆height (mm)	
	1.00	2.50	1.0	5.2	5.2	
	1.25	3.13	1.9	5.3	10.1	
today	1.50	3.75	3.2	5.4	17.3	
	2.00	5.00	7.3	5.6	40.9	
	2.50	6.25	13.3	5.7	75.8	
Technical University of	3.00	7.50	21.7	5.8	125.9	


8 DTU Space, Technical University of

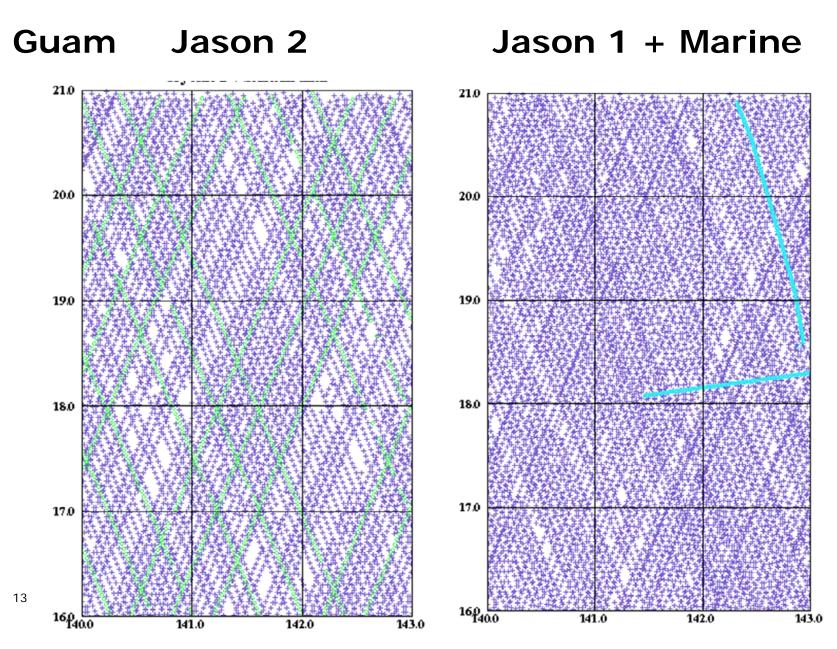
DTU Space National Space Institute

Importance of 4 year LRO (2 km)

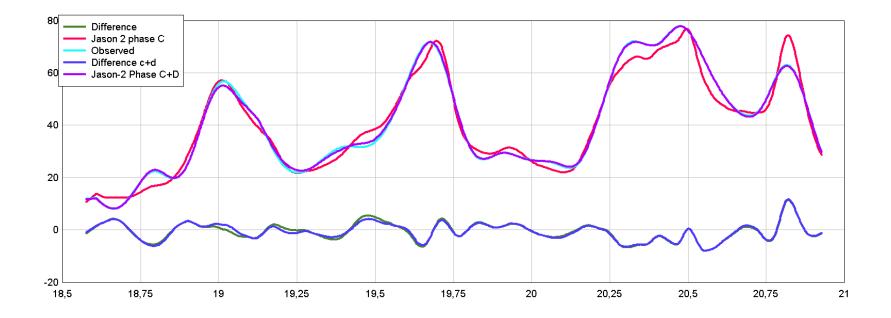
Will increase Resolution to below10 km ⇒Resolve structures smaller than 5 km Typically being seamounts Of 1 km size

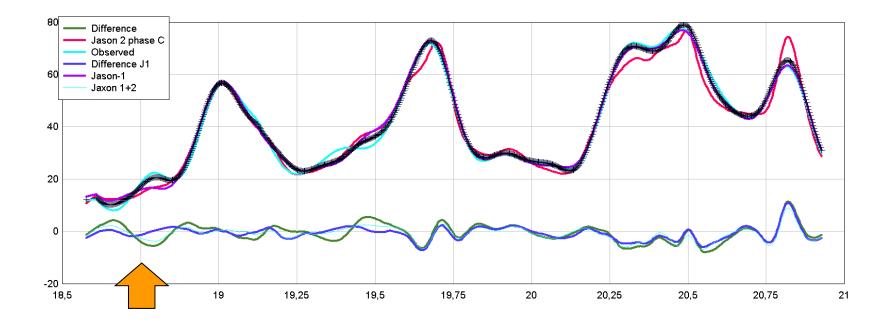

Ponta Delgada, Azores, Portugal

Range Precision (mm) and Data Volume of GM Altimeters at 20 Hz

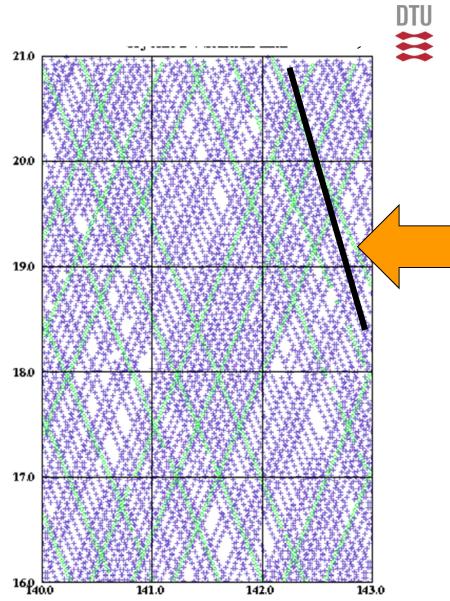

Altimeter	Noise (mm) @ 2 m SWH	# at 20 Hz (10 ⁶)
Geosat	57.0	517
ERS-1	61.8	442
CryoSat-2 LRM	43.7	2001
CryoSat-2 SAR	49.7	1010
Jason-1/2	43.0/43.0	402/344
Altika	29.0	847

US Bowditch Survey near Guam


DTU



Gravity from Jason 2 (LRO)


Combining with Jason 1

Comparison

	Std Diff
Jason 2 –LRO A	3.37
Jason 2 – LRO A+ 1month LRO B	3.25
Jason 1	2.55
Jason 1+2	2.52

Effect of J-2 LRO safehold mode

Summary

- First testing with Jason-2 LRO
- Data is of same quality as Jason-1 LRO
- Importance to continue mission
- Initial investigation saw effects of Safehold operations