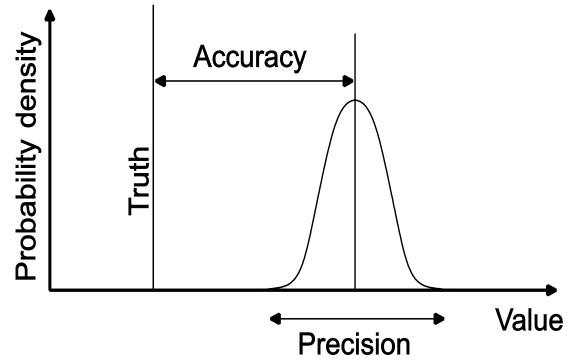
Random Error Estimation of Sentinel-3 and Jason-3 Wind & Wave Data: Initial Efforts

OSTST 2018, Ponta Delgada, Azores, Portugal, 27-29 Sep. 2018

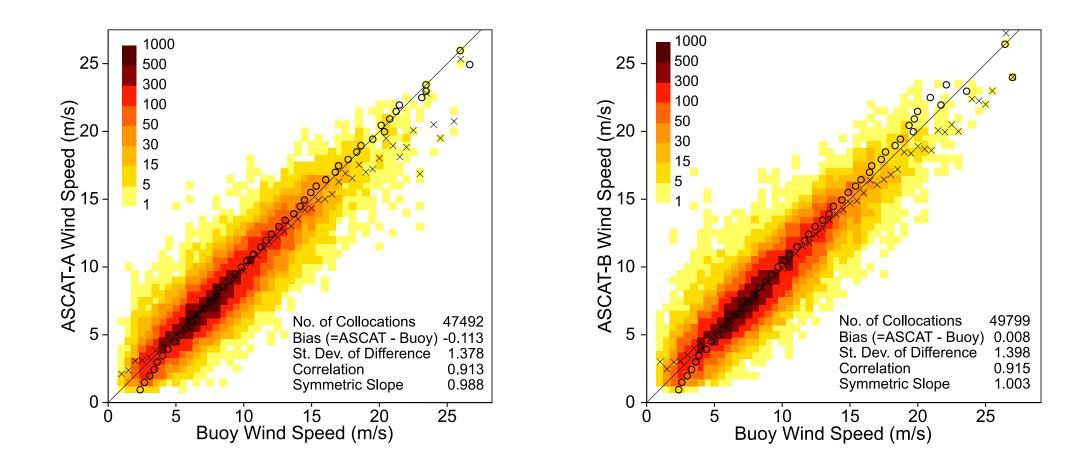
Saleh Abdalla & Giovanna De Chiara

Saleh.Abdalla (AT) ecmwf.int

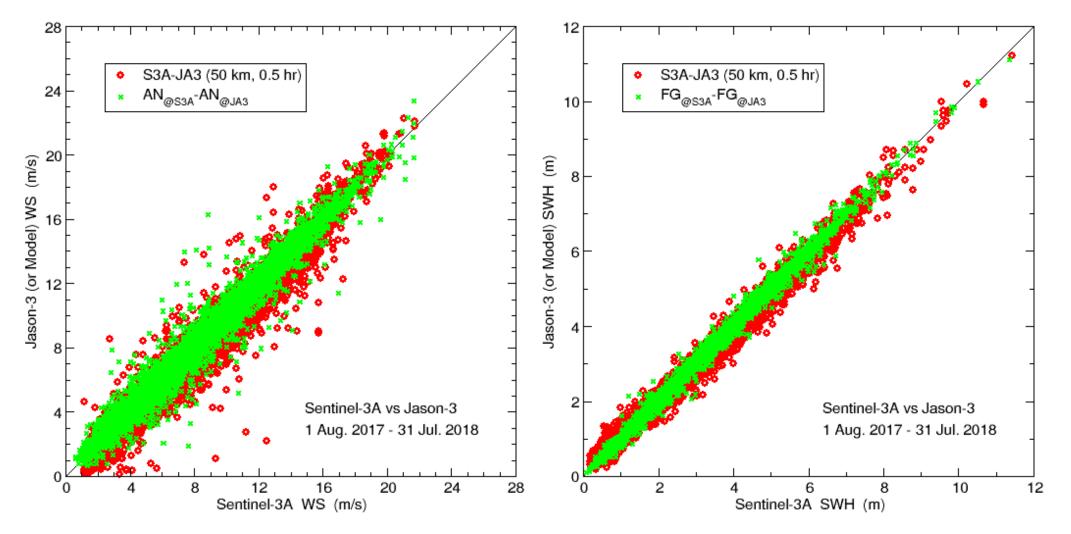


© ECMWF 27 September 2018

Introduction – Errors in the Measurements


- Error = Measurement Truth
- > Truth is usually unknown.
- Statistical description:
 - Systematic error → bias or mean difference.
 - Random error → variance or standard deviation.
- Bias cannot be found in absolute sense.
 A reference is required.
 (will not be considered here.)
- Traditionally, estimation of the random error is done against a reference (not the truth).

For example comparison of scatterometer wind speed against in-situ measurements.



Comparison between ASCAT-A (left) and ASCAT-B (right) against in-situ surface wind speed measurements (1 August 2013 - 31 July 2015)

Comparison between Sentinel-3A & Jason-3 Wind Speed and SWH at cross overs

Error Estimation – Introduction

For two systems (X and Y) measuring the same truth at the same location and time; it is assumed that:

Error Variance = $N^{-1} \Sigma (X_i - Y_i)^2 - \text{Bias}^2$

- But this is just the "difference" not the "error" unless system Y is "error-free" (which is highly unlikely).
- > Using 3 (or more) systems instead of 2 solves this problem.
 - → "Triple Collocation Technique".

Triple Collocation Technique

Great!

But it makes several assumptions which are *sometimes* violated easily!

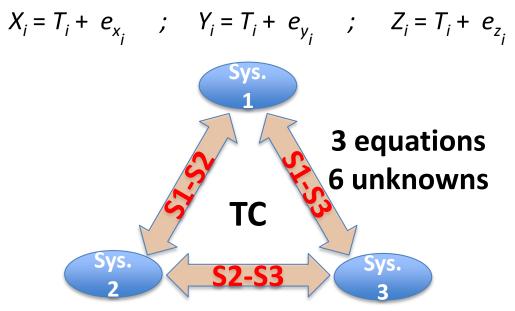
Error model

> Assume that the errors are linear additives to the true value (the "truth").

 \succ For any measurement, X_i , we assume that:

 $X_i = \alpha + \beta T_i + e_i$

here:


- α is a fixed bias in the measurement system (accuracy).
- β is a calibration constant of the measurement system (a bias that depends on the truth).
- T_i is the truth.
- e_i is the random error which is assumed to be of zero mean.

 \succ Except for the measurement X_i , all the variables are unknown.

CECMWF

Triple Collocation

> Three measuring systems X, Y, Z (e.g. alt., scatt., model):

> Using the notation: $\langle X \rangle = N^{-1} \Sigma(X_i)$; ... etc.

> Solving for the error variances and rearranging:

 $< e_x^2 > = <X^2 > - <X Y > - <X Z > + <Y Z > + < e_x e_y > + < e_x e_z > - < e_y e_z > \\ < e_y^2 > = <Y^2 > - <X Y > - <Y Z > + <X Z > + < e_x e_y > + < e_y e_z > - < e_x e_z > \\ < e_z^2 > = <Z^2 > - <Y Z > - <X Z > + <X Y > + < e_y e_z > + < e_x e_z > - < e_x e_y > \\$

Note that we set:

- $\alpha_p = 0$ (all data sets have same bias);
- $\beta_p = 1$ (for the time being).

Note that:

- $\langle e_x^2 \rangle$, $\langle e_y^2 \rangle$, $\langle e_z^2 \rangle$ are the random error variances;
- <*e_x e_y*>, <*e_x e_z*>, <*e_y e_z*> are random error covariances.

Triple Collocation – Assumptions

General Equations:

$$< e_x^2 > = - - + + < e_x e_y > + < e_x e_z > - < e_y e_z > \\ < e_y^2 > = - - + + < e_x e_y > + < e_y e_z > - < e_x e_z > \\ < e_z^2 > = - - + + < e_y e_z > + < e_x e_y > + < e_x e_y > \\$$

3 Equations with 6 unknowns (terms in black above)!

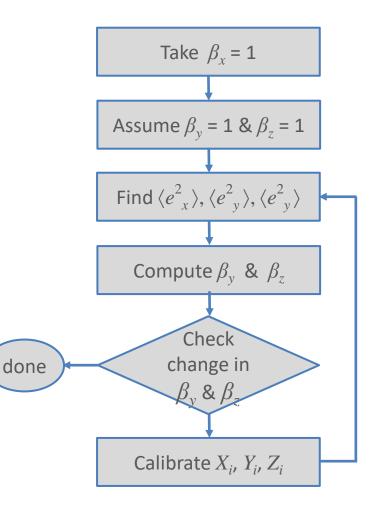
Assume no correlation between error pairs ($\langle e_x e_y \rangle = \langle e_x e_z \rangle = \langle e_y e_z \rangle = 0$) $\langle e_x^2 \rangle = \langle X^2 \rangle - \langle X Y \rangle - \langle X Z \rangle + \langle Y Z \rangle$ $\langle e_y^2 \rangle = \langle Y^2 \rangle - \langle X Y \rangle - \langle Y Z \rangle + \langle X Z \rangle$ $\langle e_z^2 \rangle = \langle Z^2 \rangle - \langle Y Z \rangle - \langle X Z \rangle + \langle X Y \rangle$

> But for the triplet SCAT-ALT-MODEL:

- we know that: $\langle e_{scat} e_{model} \rangle \neq 0$
- we assumed that $\langle e_{scat} | e_{alt} \rangle \neq 0$ (?)
- Also, we assumed that $\langle e_{alt} e_{model} \rangle = 0$ (?)

CECMWF

Triple Collocation – Procedure


- We assume that one of the systems (say the first one, X) is calibrated (i.e. $\beta_x = 1$), and we calibrate the other two systems (i.e. To find β_y and β_z) accordingly.
- The neutral regression is used for that. (Conventional regression is not suitable as it assumes that one of the measurement systems is error-free).

>
$$\beta_y = [-B + (B^2 - 4AC)^{1/2}] / 2A$$

where:

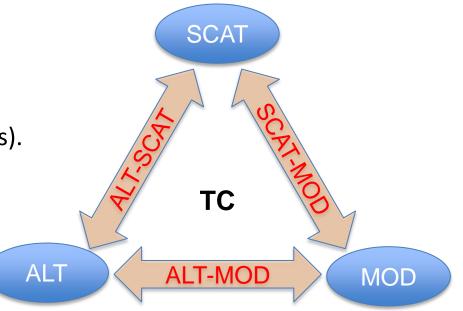
$$A = \gamma \langle X_i Y_i \rangle ; \quad B = \langle X_i^2 \rangle - \gamma \langle Y_i^2 \rangle ; \quad C = - \langle X_i Y_i \rangle$$
$$\gamma = \langle e_x^2 \rangle / \langle e_y^2 \rangle$$

- > Similarly, β_z can be found by replacing Y above with Z.
- > The calibration constants are found by iteration

Results from an earlier study

Wind speed error estimation in a triplet of Altimeter (Jason-2), Scatterometer (ASCAT-B) & the ECMWF model

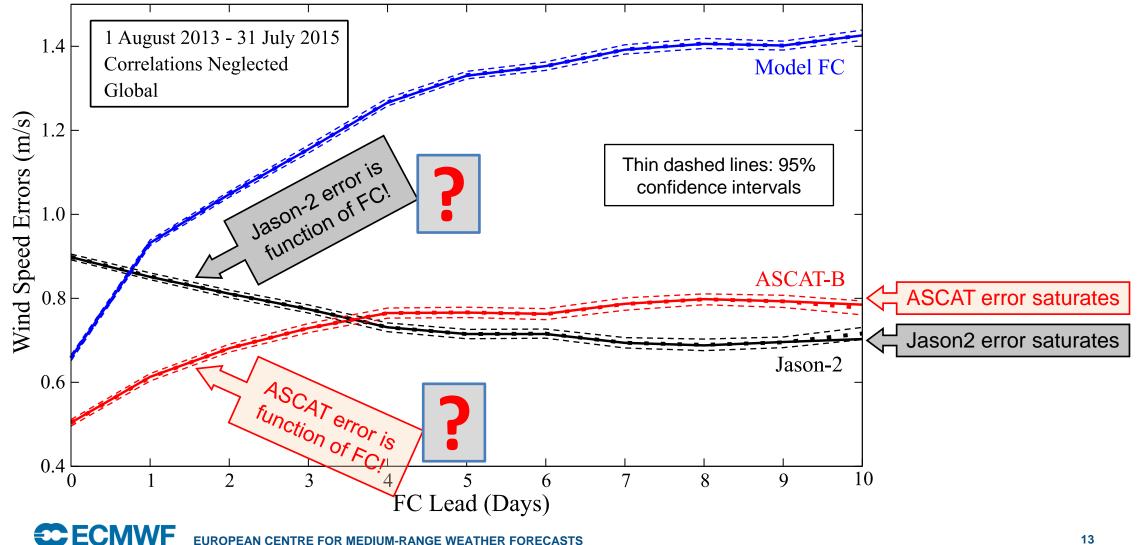
EARLIER STUDY: Altimeter – Model – Scatterometer Collocations


> Altimeter: Jason-2.

> Model: ECMWF IFS

Scatterometer: ASCAT-B (ASCAT-A provides same results).

Period: 1 August 2013 – 31 July 2015 (2 years).


> Only assimilated ASCAT data (good quality).

> Triple collocation (TC) assumes no (or known) correlation among data sets.

 \succ The model assimilates ASCAT data \rightarrow correlations! (violation to the assumptions).

Surface wind speed errors estimated by ignoring the correlations

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Altimeter – Model – Scatterometer Collocations (cont'd)

➢ Model error increases with increasing the FC lead time → OK.

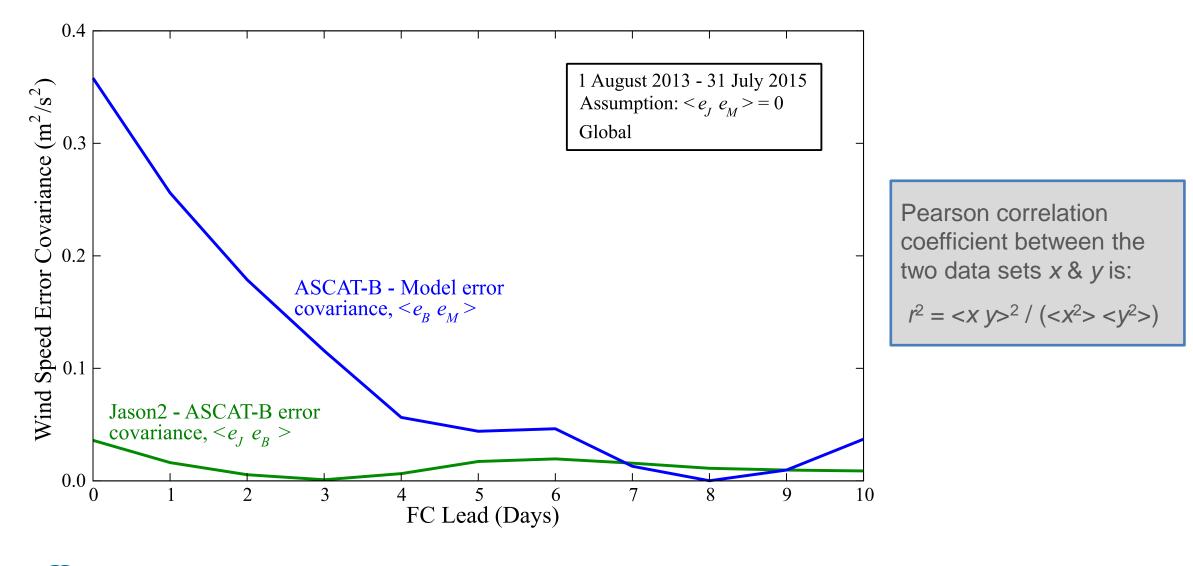
> Altimeter and scatterometer errors should not depend on FC lead time.

 \succ The model assimilates ASCAT data \rightarrow correlations (which were ignored).

Altimeter and scatterometer errors asymptote at long lead times (> ~7 days).

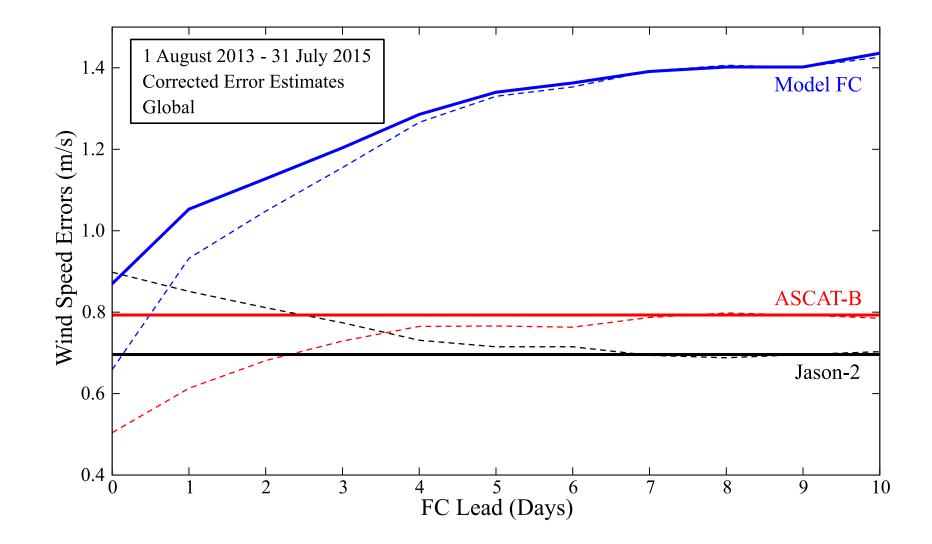
Correlations between ASCAT and the model almost vanish.

> We can estimate the correlations (2 out of 3 only) and correct the error estimates.


Error correlations and error adjustment

- > Change of error of model forecast as a function of the FC lead time is expectable.
- Change of altimeter and scatterometer errors as functions of FC lead time is due to the ignored error covariances.
- ➤ Tentatively; we expect the impact of correlations to vanish at long forecast leads (say beyond ~7 days) → accept altimeter and scatterometer errors at those lead times are the correct error estimates and work back to find two of the three error covariances (<*e_{scat} e_{model}*> & <*e_{scat} e_{alt}*>) and the model error variance <*e_{model}*²>.
- > We had still to assume that one of the covariances is zero ($\langle e_{alt} e_{model} \rangle$).

At FC lead times beyond 7 days $\langle e_x^2 \rangle$ (X=ALT), $\langle e_z^2 \rangle$ (Z=SCAT) represent the correct error variances: (Y=MODEL) $\langle e_x^2 \rangle = \langle X^2 \rangle - \langle X Y \rangle - \langle X Z \rangle + \langle Y Z \rangle + 0 + \langle e_x e_z \rangle - \langle e_y e_z \rangle + \langle e_y^2 \rangle = \langle Y^2 \rangle - \langle X Y \rangle - \langle Y Z \rangle + \langle X Z \rangle + 0 + \langle e_y e_z \rangle - \langle e_x e_z \rangle + \langle e_z^2 \rangle = \langle Z^2 \rangle - \langle Y Z \rangle - \langle X Z \rangle + \langle X Y \rangle + \langle e_y e_z \rangle + \langle e_x e_z \rangle - \langle 0$



Estimation of surface wind speed error correlations (covariances)

Errors corrected for correlations

Concluding Remarks

- > Triple collocation is a powerful technique for the estimation of random errors.
- Ocean surface wind speeds from altimeters and scatterometers have low random errors for scales in the order of 100 km (~0.7 & 0.8 m/s for Jason-2 and ASCAT-B; respectively, for the global ocean).
- The error in the model wind speed analysis is comparable with altimeters and scatterometers (better than 0.9 m/s for the global ocean).
- Some error correlations can be estimated by using model forecasts at 7-day lead time or beyond.

Work is in progress towards error estimation of Sentinel-3 and Jason-3 wind and wave data.