PML Plymouth Marine Laboratory

Listen to the ocean

Evaluating Sentinel-3A SRAL performance near the coast of southwest England

Francesco Nencioli¹ and Graham Quartly¹ ¹Plymouth Marine Laboratory, UK

SENTINEL 3 Mission Performance Centre

Q⁄

OSTST Meeting, Ponta Delgada, Azores, 27-28 September 2018

PML Plymouth Marine Laboratory

> The work performed in the frame of this contract is carried out with funding by the European Union. The views expressed herein can in no way be taken to reflect the official opinion of either the European Union or the European Space Agency.

Advantages of Sentinel-3A SRAL

Intro

Plymouth Marine Laboratory

PML

SAR instrument (dual-frequency delay-Doppler)

- Smaller footprint
- Lower noise levels

Higher spatial resolution

(1) Improved accuracy near the coast

(2) Resolution of smaller scale dynamics (below large mesoscale ~O(100 km))

(source: https://Sentinel-.esa.int/web/Sentinel-/userquides/)

PML Plymouth Marine Laboratory

(2) Resolution of smaller scale dynamics (below large mesoscale ~O(100 km))

Sentinel-3A data

- → 12 tracks
- Complex coastal morphology (different incidence angles)

PML Plymouth Marine Laboratory

(2) Resolution of smaller scale dynamics (below large mesoscale ~O(100 km))

Assess both aspects in the coastal region of southwest England

Sentinel-3A data

- → 12 tracks
- Complex coastal morphology (different incidence angles)

In-situ wave data

- Time-series from 17 buoys
- Good coverage of various coastal conditions (offshore to inshore)

PML Plymouth Marine Laboratory

(2) Resolution of smaller scale dynamics (below large mesoscale ~O(100 km))

Assess both aspects in the coastal region of southwest England

Sentinel-3A data

- → 12 tracks
- Complex coastal morphology (different incidence angles)

In-situ wave data

- → Time-series from 17 buoys
- Good coverage of various coastal conditions (offshore to inshore)

HF Radar data

 Time-series of 2dimensional velocity and wave fields

PML Plymouth Marine Laboratory

(2) Resolution of smaller scale dynamics (below large mesoscale ~O(100 km))

Assess both aspects in the coastal region of southwest England

Sentinel-3A data

- → 12 tracks
- Complex coastal morphology (different incidence angles)

In-situ wave data

- Time-series from 17 buoys
- Good coverage of various coastal conditions (offshore to inshore)

HF Radar data

 Time-series of 2dimensional velocity and wave fields

In-situ data to evaluate **performances** (with respect to PLRM mode) of SAR **significant wave height** and **velocity** obs.

PML Plymouth Marine Laboratory

(2) Resolution of smaller scale dynamics (below large mesoscale ~O(100 km))

Assess both aspects in the coastal region of southwest England

Sentinel-3A data

- → 12 tracks
- Complex coastal morphology (different incidence angles)

In-situ wave data

- → Time-series from 17 buoys
- Good coverage of various coastal conditions (offshore to inshore)

HF Radar data

 Time-series of 2dimensional velocity and wave fields

In-situ data to evaluate performances (with respect to PLRM mode) of SAR significant wave height and velocity obs.

- → Analysis based on **PB 2.27 reprocessed** dataset (released Feb 2018)
- Cycles 002 to 031 (from Mar-2016 to May-2018) (cycles 001 incomplete for SAR; PLRM incomplete also in cycles 002 and 003)
- → 20 Hz Ku-band observations (variables swh_ocean_20_ku and swh_ocean_20_plrm_ku)
- → Alongtrack spatial resolution of ~340 m

- → Analysis based on **PB 2.27 reprocessed** dataset (released Feb 2018)
- Cycles 002 to 031 (from Mar-2016 to May-2018) (cycles 001 incomplete for SAR; PLRM incomplete also in cycles 002 and 003)
- → 20 Hz Ku-band observations (variables swh_ocean_20_ku and swh_ocean_20_plrm_ku)
- → Alongtrack spatial resolution of ~340 m

- → Analysis based on PB 2.27 reprocessed dataset (released Feb 2018)
- Cycles 002 to 031 (from Mar-2016 to May-2018) (cycles 001 incomplete for SAR; PLRM incomplete also in cycles 002 and 003)
- → 20 Hz Ku-band observations (variables swh_ocean_20_ku and swh_ocean_20_plrm_ku)
- → Alongtrack spatial resolution of ~340 m

- → Analysis based on **PB 2.27 reprocessed** dataset (released Feb 2018)
- Cycles 002 to 031 (from Mar-2016 to May-2018) (cycles 001 incomplete for SAR; PLRM incomplete also in cycles 002 and 003)
- → 20 Hz Ku-band observations (variables swh_ocean_20_ku and swh_ocean_20_plrm_ku)
- → Alongtrack spatial resolution of ~340 m

Sentinel-3A data processing: Custom distance from land

- Land mask based on ETOPO 01 (https://ngdc.noaa.gov/mgg/global/global.html)
- \rightarrow 1 arc-minute resolution (1.852 km)

Sentinel-3A data processing: Custom distance from land

- Land mask based on ETOPO 01 (https://ngdc.noaa.gov/mgg/global/global.html)
- → 1 arc-minute resolution (1.852 km)

PML Plymouth Marine Laboratory

New distance is from track point to closest land point (still room for improvement)

Sentinel-3A data processing: Custom distance from land

- Land mask based on ETOPO 01 (https://ngdc.noaa.gov/mgg/global/global.html)
- → 1 arc-minute resolution (1.852 km)
- New distance is from track point to closest land point (still room for improvement)
- → Example track 242

Sentinel-3A data processing: Custom distance from land

- Land mask based on ETOPO 01 (https://ngdc.noaa.gov/mgg/global/global.html)
- → 1 arc-minute resolution (1.852 km)
- New distance is from track point to closest land point (still room for improvement)
- → Example track 242

Sentinel-3A data processing: Custom distance from land

- Land mask based on ETOPO 01 (https://ngdc.noaa.gov/mgg/global/global.html)
- → 1 arc-minute resolution (1.852 km)
- New distance is from track point to closest land point (still room for improvement)
- → Example track 242

Sentinel-3A data processing: Custom distance from land

- Land mask based on ETOPO 01 (https://ngdc.noaa.gov/mgg/global/global.html)
- → 1 arc-minute resolution (1.852 km)
- New distance is from track point to closest land point (still room for improvement)
- → Example Cycle 006

Sentinel-3A data processing

Example of open sea track (Track 94 - cycle 006)

Raw signal

PML Plymouth Marine Laboratory

- Alongtrack noise in both SAR and PLRM
- PLRM characterized by larger noise
- Noise reduced applying moving average filter: Gaussian window with 50-bin FWHM (~17 km)

Smoothed signal

 Often (but not always) slight offset between SAR and PLRM

PML | Plymouth Marine Laboratory

Datasets: (1) Sentinel-3A significant wave height

Sentinel-3A data processing

Example of coastal track (Track 128 - cycle 006)

Raw signal

- Alongtrack noise in both SAR and PLRM
- PLRM characterized by larger noise
- Noise reduced applying moving average filter: Gaussian window with 50-bin FWHM (~17 km)

Smoothed signal

Often (but not always) slight offset between SAR and PLRM

Sentinel-3A data processing

Example of coastal track (Track 128 - cycle 006)

Raw signal

PML Plymouth Marine Laboratory

- Alongtrack noise in both SAR and PLRM
- PLRM characterized by larger noise
- Noise reduced applying moving average filter: Gaussian window with 50-bin FWHM (~17 km)

Smoothed signal

- Often (but not always) slight offset between SAR and PLRM
- Marked differences near the coast

Wave data from two monitoring programs:

- 1. Coastal Channel Observatory
- → 16 wave buoys in SW england
- Part of National Network of Regional Coastal Monitoring
- Time-series of swh, direction and period
- 30-min averages from Jan-2016 to Apr 2018

Further info at: *http://www.channelcoast.org*

2. <u>Western Channel Observatory</u>

- E1 buoy in front of Plymouth sound
- Mooring financed by NERC and managed by PML
- Time-series of swh and direction
- I-hour averages from Jan-2016 to present

Plymouth Marine Laboratory

PML

```
Further info at: http://www.westernchannelobservatory.org.uk/
```


Wave buoy timeseries (total)

- → Example from 3 buoys representative of different morphological conditions:
 - 1) Open sea

- 2) Coastal & open
- 3) Coastal & sheltered

Wave buoy timeseries (total)

Wave buoy timeseries (Aug 2016)

Wave buoy spectra (total)

PML Plymouth Marine Laboratory

General characteristics

- 1) Reduced SWH approaching the coast
- 2) Further reduced in sheltered regions
- Presence of tidal oscillations (not removed for the analysis!!!)
- 4) Main swells in open sea between NW and SW
- 5) Swell direction changes due to interaction with the coast (refraction)

Completely automated analysis

- For each buoy found the two closest tracks
- → For each S-3A passage identified closest buoy observation in the timeseries
- Scatter plots between buoy observations and S-3A SWH every 50 bins from the closest point (~17 km spacing, matching scale of smoothing filter)
- Can be extended to a broader region, but is sensitive to dataset outliers/bad flagging

Correlation plot: (1) Open conditions (Hub)

Correlation plot: (1) Open conditions (Hub)

→ Good correlation between buoy and S-3A SAR at all distances

Correlation plot: (1) Open conditions (Hub)

Good correlation between buoy and S-3A SAR at all distances
Similar good correlation for S-3A PLRM

Correlation plot: (2) Coastal and open conditions (WBy)

→ Best correlation with closest point

Correlation plot: (2) Coastal and open conditions (WBy)

PML Plymouth Marine Laboratory

→ Best correlation with closest point (Increasing wave heights with distance from the coast)

Correlation plot: (2) Coastal and open conditions (WBy)

PML

Plymouth Marine Laboratory

Correlation close to the coast not as good for PLRM (coastal contamination)

S-3A SWH observations consistent with operational model results

PML

Plymouth Marine

- Decrease in SWH towards the coast significant
- Due to sheltering effect of coast morphology on dominant W to SW swells

Source: http://marc.ifremer.fr/resultats/vagues/modeles_atlantique_nord/

Correlation plot: (3) Coastal and sheltered conditions (Tor)

Plymouth Marine Laboratory

PML

Similar trend but correlation not as good as open case (even though same bay)

Correlation plot: (3) Coastal and sheltered conditions (Tor)

Plymouth Marine Laboratory

PML

Similar trend but correlation not as good as open case (even though same bay)
Analogous performance for PLRM

Correlation plot: (3) Coastal and sheltered conditions (Tor)

Plymouth Marine Laboratory

PML

Similar trend but correlation not as good as open case (even though same bay)
Analogous performance for PLRM

Individual correlation-slope scatter plots

(1) Open

Plymouth Marine Laboratory

PML

(2) Coastal

(3) Sheltered

Individual correlation-slope scatter plots

(1) Open

Plymouth Marine Laboratory

PML

(2) Coastal

(3) Sheltered

Identify the combination of coastal buoy + S3 track to use:

Question: For which area buoy measurements are representative?

Solution: Wave model to identify the spatial correlation around buoy measurements

MetOffice WWIII-AMM7

→ Wave watch III model

PML Plymouth Marine Laboratory

- → 7 km spatial resolution
- Hourly temporal resolution
- → From Apr 2014 to present
- Available at CMEMS

Computed correlations between closest point to the buoy and rest of model points

4 parameters derived:

- 1) Correlation coefficient (r2)
- 2) Root mean square error (RMS)
- 3) Regression slope
- 4) Regression intercept

-0.1

-0.2

Total correlation-slope scatter plots (HuB: Open Sea)

PML Plymouth Marine Laboratory

intercept

0.0

Total correlation-slope scatter plots (HuB: Open Sea)

Total correlation-slope scatter plots (WBy: Coastal and Open)

1.0

0.7

0.6

0.5

PML Plymouth Marine Laboratory

intercept

Total correlation-slope scatter plots (WBy: Coastal and Open)

→ Identified 7 coastal open buoys

SAR: Correlation towards 1:1 ratio with decreasing distance from buoy (and coast)

Plymouth Marine Laboratory

PML

SAR: Correlation towards 1:1 ratio with decreasing distance from buoy (and coast) PLRM: No clear correlation with decreasing distance from buoy

Plymouth Marine Laboratory

PML

SAR: Correlation towards 1:1 ratio with decreasing distance from buoy (and coast) **PLRM:** No clear correlation with decreasing distance from buoy

Plymouth Marine Laboratory

PML

SAR: Correlation towards 1:1 ratio with decreasing distance from buoy (and coast)

PLRM: No clear correlation with decreasing distance from buoy

Correlation degrades sharply from 1:1 ratio approaching the coast (20 to 10 km from the coast)

Sentinel-3A SAR observations of SWH:

- Accurate values close to shore (<20 km)</p>
- Accurate trends towards the coast
- Better performance compared PLRM

However not everywhere, not every time....

Future Work

- Investigate performance based on conditions/locations (e.g. swell direction; wave period; wave height)
- Complement the analysis with HF Radar observations (waves and currents)
- Extend the analysis:
 - Broader region
 - Sentinel-3B observations

HF measurements still under processing (University of Plymouth)

PML Plymouth Marine Laboratory

HF measurements still under processing (University of Plymouth)

Plymouth Marine Laboratory

PML

HF measurements still under processing (University of Plymouth)

HF measurements still under processing (University of Plymouth)

- Useful observations for wave coastal variations
- → Good site for Sentinel-3B

Plymouth Marine Laboratory

PML

